

INTERNATIONAL ORGANIZATION FOR STANDARDIZATIONOMEXDYHAPODHAR OPFAHU3AUUR ПО СТАНДАРТИЗАЦИИOORGANISATION INTERNATIONALE DE NORMALISATION

Positive-displacement vacuum pumps — Measurement of performance characteristics — Part II : Measurement of ultimate pressure

Pompes primaires volumétriques à vide -- Mesurage des caractéristiques fonctionnelles --Partie II : Mesurage de la pression limite

(standards.iteh.ai)

First edition - 1978-09-01

ISO 1607-2:1978 https://standards.iteh.ai/catalog/standards/sist/cdf8e3ce-bd89-4644-b9dbb655a04adb60/iso-1607-2-1978

UDC 621.522 : 531.788

Ref. No. ISO 1607/II-1978 (E)

Descriptors : vacuum apparatus, pumps, vacuum pumps, tests, performance tests, pressure measurement.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 1607/11 was developed by Technical Committee VIEW ISO/TC 112, Vacuum technology, and was circulated to the member bodies in June 1977. (standards.iteh.ai)

It has been approved by the member bodies of the following countries :

	100 1007 2:1970		
Australia	Germinanyndards.iteh.ai/catalogetamanyas/sist/cdf8e3ce-bd89-4644-b9db-		
Austria	India	b655a04 south Africa, Rep. 978	
Belgium	Italy	Spain	
Chile	Korea, Rep. of	Turkey	
Czechoslovakia	Mexico	United Kingdom	
Egypt, Arab Rep. of	Netherlands	U.S.A.	
France	Philippines	Yugoslavia	
Egypt, Arab Rep. of France	Netherlands Philippines	U.S.A. Yugoslavia	

No member body expressed disapproval of the document.

International Organization for Standardization, 1978 •

Positive-displacement vacuum pumps — Measurement of performance characteristics — Part II : Measurement of ultimate pressure

0 INTRODUCTION

The purpose of this International Standard is to ensure that measurements of the performance characteristics of positivedisplacement vacuum pumps are, as far as possible, carried out by uniform procedures and under uniform conditions. It is hoped that, as a result, measurements conducted by different manufacturers or in different laboratories, and statements of performance quoted in manufacturers' literature, will be on a properly comparable basis to the benefit of both user and manufacturer.

It is envisaged that the complete International Standard will, in due course, deal comprehensively with the measurement of a wide range of performance characteristics of the main types of positive-displacement vacuum pumps. In order, however, that useful agreements of more restricted as scope may be implemented with the least possible delay, it is intended to publish this International Standard in 07-2 parts.

2.2 test dome; test header : A chamber of specified form and dimensions attached to the inlet of the pump through which a measured flow of gas may be admitted to the pump, and which is equipped with means of pressure measurement.

3 APPARATUS

3.1 Test dome, cylindrical and of the form shown in the figure. The axial dimension of the dome is 1,5 D, where D is the internal diameter, and the test gas entrance is on the axis at a distance D from the connecting flange and so arranged that the gas entrance into the dome is in a direction away from the pump mouth. The connection to the pressure measuring gauge is at a distance 0,5 D from the connecting flange with its axis perpendicular to that of the dome. The axis of the test dome shall be perpendicular to the plane of the inlet flange of the pump.

https://standards.iteh.ai/catalog/standards/sitt/cdf8e3ce-bd89-4644-b9dbb655a04adb60/iso-16times⁻¹the² volume swept by the pump during one com-

1 SCOPE AND FIELD OF APPLICATION

This part of the International Standard specifies methods of measuring the ultimate pressure of positive-displacement vacuum pumps.

The pumps considered are those which discharge the gas against atmospheric pressure and which achieve a limiting inlet pressure of less than 100 Pa^{*} in one stage.

2 DEFINITIONS

For the purposes of this International Standard the following definitions apply :

2.1 ultimate pressure [unit Pa]: The limiting pressure approached asymptotically in the dome, with the gas inlet valve closed and the pump in normal operation. A distinction must be made between the ultimate pressure due only to non-condensable gases, and the total ultimate pressure.

The volume of the test dome (V_D) shall be at least five times the volume swept by the pump during one compression cycle (V_p) . The connection to the inlet of the pump shall consist of an adaptor the length of which shall not exceed 0.5 D (see the figure). The appropriate dome dimensions for pumps of given sizes are indicated in the following table.

$V_{ m p}$, litres	V_{D} , litres	D, mm
0 to 0,26	1,3	100
0,26 to 1,1	5,4	160
1,1 to 4,2	21	250
4,2 to 17	84	400
17 to 65	325	630
65 to 260	1 300	1 000

NOTE – For practical reasons the test dome recommended is identical in form with that already adopted for the measurement of the volume rate of flow of positive-displacement pumps (see ISO 1607/I).

In so far as the measurement of ultimate pressure alone is concerned, it is not necessary to comply with the actual gas entry arrangement specified.

The temperature of the dome shall be maintained within the limits 20 to 25 $^{\circ}\text{C}.$

 ¹⁰⁰ Pa = 100 N/m² = 1 mbar; 133 Pa ≈ 1 torr

3.2 Gauges, for measuring the ultimate pressure due only to non-condensable gases, calibrated to an accuracy within ± 5 % for pressures greater than or equal to 1 Pa, and within ± 10 % for lower pressures.

The gauge must be protected by a cold trap suitably designed and connected to ensure that the gauge is influenced only by the pressure due to non-condensable gases.

3.3 Vacuum gauges, for measuring the total ultimate pressure, of a type whose sensitivity is independent of the nature of the gas, or vapour, such as a diaphragm gauge.

The gauge shall be calibrated to an accuracy within \pm 10 % of the pressure to be measured. For this measurement a vapour trap shall not be inserted in the connection line between the dome and the gauge.

The method adopted is that in which the ultimate pressure

is measured at a specified temperature, in a specified form

by the manufacturer. The ambient temperature shall be below 25 $^{\circ}$ C unless otherwise stated in the conditions of test. Before the commencement of actual measurements, the pump shall be run for at least 24 h, with full gas ballast, to ensure that the condition of the oil is representative of the normal use of the pump. Thereafter, the gas ballast valve shall be closed, and pressure measurements made at intervals of 30 min. The ultimate pressure is considered to be reached when three successive measurements show no further reduction in the measured pressure.

The above test may also be carried out with full gas ballast (the gas-ballast valve being fully open). In this case the series of measurements shall not be commenced until the pump has reached its equilibrium temperature.

5 TEST REPORT

All reports of test results shall indicate the exact nature and conditions of the test performed as enumerated below.

5.1 General conditions

a) whether the results refer to the ultimate total pressure or that due only to non-condensable gases;

of test dome attached to the inlet of the pump. STANDA b) whether gas ballast was in operation.

4.2 Procedure

4.1 Principle

4 TEST METHOD

(standar528 supplementary conditions

To commence the procedure, the test dome shall be connected to the inlet of the pump, after ensuring that the so 1607-2:1978 a) type and conditions of operation of all gauges used;

inner surface of the dome is clean and dry https://standards.iteh.ai/catalog/standarb/sitype@cf.seal and sealing/material used on the pump Gauges, in accordance with 3.2 or 3.3, shall be connected adb60/isonet/2-1978

to the test dome depending on the measurement being undertaken. If the dome is baked out prior to the measurements, it must, after having cooled down, be subjected for a few minutes to a pressure of at least 100 Pa by admitting dried ambient air. The gas inlet port of the dome must then be closed.

The pump shall be run with the prescribed quantity and grade of fresh oil, and at the rotational frequency specified

c) type or traps employed, and their temperatures during the test;

- d) cooling water flow rate, if applicable;
- e) rotational frequency of the pumps;
- f) ambient temperature and pressure;
- g) specification of the pump oil.

í,

X.

FIGURE - Recommended form of test dome

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 1607-2:1978 https://standards.iteh.ai/catalog/standards/sist/cdf8e3ce-bd89-4644-b9dbb655a04adb60/iso-1607-2-1978

iTeh STANDARD PREVIEW (standards.iteh.ai)

Ĺ

ISO 1607-2:1978 https://standards.iteh.ai/catalog/standards/sist/cdf8e3ce-bd89-4644-b9dbb655a04adb60/iso-1607-2-1978

iTeh STANDARD PREVIEW (standards.iteh.ai)

•

ISO 1607-2:1978 https://standards.iteh.ai/catalog/standards/sist/cdf8e3ce-bd89-4644-b9dbb655a04adb60/iso-1607-2-1978