
Designation: E 2617 – 08

Standard Practice for
Validation of Empirically Derived Multivariate Calibrations1

This standard is issued under the fixed designation E 2617; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers requirements for the validation of
empirically derived calibrations (Note 1) such as calibrations
derived by Multiple Linear Regression (MLR), Principal Com-
ponent Regression (PCR), Partial Least Squares (PLS), Artifi-
cial Neural Networks (ANN), or any other empirical calibra-
tion technique whereby a relationship is postulated between a
set of variables measured for a given sample under test and one
or more physical, chemical, quality, or membership properties
applicable to that sample.

NOTE 1—Empirically derived calibrations are sometimes referred to as
“models” or “calibrations.” In the following text, for conciseness, the term
“calibration” may be used instead of the full name of the procedure.

1.2 This practice does not cover procedures for establishing
said postulated relationship.

1.3 This practice serves as an overview of techniques used
to verify the applicability of an empirically derived multivari-
ate calibration to the measurement of a sample under test and
to verify equivalence between the properties calculated from
the empirically derived multivariate calibration and the results
of an accepted reference method of measurement to within
control limits established for the prespecified statistical confi-
dence level.

1.4 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards: 2

E 131 Terminology Relating to Molecular Spectroscopy
E 1655 Practices for Infrared Multivariate Quantitative

Analysis
E 1790 Practice for Near Infrared Qualitative Analysis

3. Terminology

3.1 For terminology related to molecular spectroscopic
methods, refer to Terminology E 131. For terminology related
to multivariate quantitative modeling refer to Practices E 1655.
While Practices E 1655 is written in the context of multivariate
spectroscopic methods, the terminology is also applicable to
other multivariate technologies.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 accuracy—the closeness of agreement between a test

result and an accepted reference value.
3.2.2 bias—the arithmetic average difference between the

reference values and the values produced by the analytical
method under test, for a set of samples.

3.2.3 detection limit—the lowest level of a property in a
sample that can be detected, but not necessarily quantified, by
the measurement system.

3.2.4 estimate—the constituent concentration, identifica-
tion, or other property of a sample as determined by the
analytical method being validated.

3.2.5 initial validation—validation that is performed when
an analyzer system is initially installed or after major mainte-
nance.

3.2.6 Negative Fraction Identified—the fraction of samples
not having a particular characteristic that is identified as not
having that characteristic.

3.2.6.1 Discussion—Negative Fraction Identified assumes
that the characteristic that the test measures either is or is not
present. It is not applicable to tests with multiple possible
outcomes.

3.2.7 ongoing periodic revalidation—the quality assurance
process by which, in the case of quantitative calibrations, the
bias and precision or, in the case of qualitative calibrations, the
Positive Fraction Identified and Negative Fraction Identified
performance determined during initial validation are shown to
be sustained.

3.2.8 Positive Fraction Identified—the fraction of samples
having a particular characteristic that is identified as having
that characteristic.

3.2.8.1 Discussion—Positive Fraction Identified assumes
that the characteristic that the test measures either is or is not
present. It is not applicable to tests with multiple possible
outcomes.

1 This practice is under the jurisdiction of ASTM Committee E13 on Molecular
Spectroscopy and Separation Science and is the direct responsibility of Subcom-
mittee E13.11 on Multivariate Analysis.
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3.2.9 precision—the closeness of agreement between inde-
pendent test results obtained under stipulated conditions.

3.2.9.1 Discussion—Precision may be a measure of either
the degree of reproducibility or degree of repeatability of the
analytical method under normal operating conditions. In this
context, reproducibility refers to the use of the analytical
procedure in different laboratories, as in a collaborative study.

3.2.10 quantification limit—the lowest level of a sample
property which can be determined with acceptable precision
and accuracy under the stated experimental conditions.

3.2.11 range—the interval between the upper and lower
levels of a property (including these levels) that has been
demonstrated to be determined with a suitable level of preci-
sion and accuracy using the method as specified.

3.2.12 reference value—the metric of a property as deter-
mined by well-characterized method, the accuracy of which
has been stated or defined, that is, another, already-validated
method.

3.2.13 validation—the statistically quantified judgment that
an empirically derived multivariate calibration is applicable to
the measurement on which the calibration is to be applied and
can perform property estimates with, in the case of quantitative
calibrations, acceptable precision, accuracy and bias or, in the
case of qualitative calibrations, acceptable Positive Fraction
Identified and Negative Fraction Identified, as compared with
results from an accepted reference method.

4. Summary of Practice

4.1 Validating an empirically derived multivariate calibra-
tion (model) consists of four major procedures: validation at
initial development, revalidation at initial deployment or after
a revision, ongoing periodic revalidation, and qualification of
each measurement before using the calibration to estimate the
property(s) of the sample being measured.

5. Significance and Use

5.1 This practice outlines a universally applicable procedure
to validate the performance of a quantitative or qualitative,
empirically derived, multivariate calibration relative to an
accepted reference method.

5.2 This practice provides procedures for evaluating the
capability of a calibration to provide reliable estimations
relative to an accepted reference method.

5.3 This practice provides purchasers of a measurement
system that incorporates an empirically derived multivariate
calibration with options for specifying validation requirements
to ensure that the system is capable of providing estimations
with an appropriate degree of agreement with an accepted
reference method.

5.4 This practice provides the user of a measurement system
that incorporates an empirically derived multivariate calibra-
tion with procedures capable of providing information that may
be useful for ongoing quality assurance of the performance of
the measurement system.

5.5 Validation information obtained in the application of
this practice is applicable only to the material type and property
range of the materials used to perform the validation and only
for the individual measurement system on which the practice is
completely applied. It is the user’s responsibility to select the

property levels and the compositional characteristics of the
validation samples such that they are suitable to the applica-
tion. This practice allows the user to write a comprehensive
validation statement for the analyzer system including specific
limits for the validated range of application and specific
restrictions to the permitted uses of the measurement system.
Users are cautioned against extrapolation of validation results
beyond the material type(s) and property range(s) used to
obtain these results.

5.6 Users are cautioned that a validated empirically derived
multivariate calibration is applicable only to samples that fall
within the subset population represented in the validation set.
The estimation from an empirically derived multivariate cali-
bration can only be validated when the applicability of the
calibration is explicitly established for the particular measure-
ment for which the estimation is produced. Applicability
cannot be assumed.

6. Methods and Considerations

6.1 When validating an empirically derived multivariate
calibration, it is the responsibility of the user to describe the
measurement system and the required level of agreement
between the estimations produced by the calibration and the
accepted reference method(s).

6.2 When validating a measurement system incorporating
an empirically derived multivariate calibration, it is the respon-
sibility of the user to satisfy the requirements of any applicable
tests specific to the measurement system including any Instal-
lation Qualification (IQ), Operational Qualification (OQ), and
Performance Qualification (PQ) requirements; which may be
mandated by competent regulatory authorities, an applicable
Quality Assurance (QA), or Standard Operating Procedure
(SOP) or be recommended by the instrument or equipment
manufacturer.

6.3 Reference Values and Quality Controls for the Accepted
Reference Method:

6.3.1 The reference (or true) value which is compared with
each respective estimate produced by the empirically derived
multivariate calibration is established by applying an accepted
reference method, the characteristics of which are known and
stated, to the sample from which the measurement system
derives the measurement.

6.3.2 To ensure the reliability of the reference values
provided by an accepted reference method, appropriate quality
controls should be applied to the accepted reference method.

7. Procedure

7.1 The objective of the validation procedure is to quantify
the performance of an empirically derived multivariate calibra-
tion in terms of, in the case of quantitative calibrations,
precision, accuracy and bias or, in the case of qualitative
calibrations, Positive Fraction Identified and Negative Fraction
Identified relative to an accepted reference method for each
property of interest. The user must specify, based on the
intended use of the calibration, acceptable precision and bias or
Positive Fraction Identified and Negative Fraction Identified
performance criteria before initiating the validation. These
criteria will be dependent on the intended use of the analyzer
and may be based, all or in part, on risk based criteria.
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7.1.1 The acceptable performance criteria specified by the
user may be constant over the entire range of sample variabil-
ity. Alternatively, different acceptable performance criteria may
be specified by the user for different sub-ranges of the full
sample variability.

7.2 Validation of calibration is accomplished by using the
calibration to estimate the property(s) of a set of validation
samples and statistically comparing the estimates for these
samples to known reference values. Validation requires thor-
ough testing of the model with a sufficient number of repre-
sentative validation samples to ensure that it performs ad-
equately over the entire range of possible sample variability.

7.3 Initial Validation Sample Set:
7.3.1 For the initial validation of a multivariate model, an

ideal validation sample set will:
7.3.1.1 Contain samples that provide sufficient examples of

all combinations of variation in the sample properties which
are expected to be present in the samples which are to be
analyzed using the calibration;

7.3.1.2 Contain samples for which the ranges of variation in
the sample properties is comparable to the ranges of variation
expected for samples that are to be analyzed using the model;

7.3.1.3 Contain samples for which the respective variations
of the sample properties are uniformly and mutually indepen-
dently distributed over their full respective ranges or, when
applicable, subranges of variation; and

7.3.1.4 Contain a sufficient number of samples to statisti-
cally test the relationships between the measured variables and
the properties that are modeled by the calibration.

7.3.2 For simple systems, sufficient validation samples can
generally be obtained to meet the criteria in 7.3.1.1-7.3.1.4. For
complex mixtures, obtaining an ideal validation set may be
difficult if not impossible. In such cases, it may be necessary to
validate discrete subranges of the calibration incrementally,
over time as samples become available.

7.3.3 The number of samples needed to validate a calibra-
tion depends on the complexity of the calibration, the ranges of
property variation over which the calibration is to be applied,
and the degree of confidence required. It is important to
validate a calibration with as many samples as possible to
maximize the likelihood of challenging the calibration with
rarely occurring, but potentially troublesome samples. The
number and range of validation samples should be sufficient to
validate the calibration to the statistical degree of confidence
required for the application. In all cases, a minimum of 20
validation samples is recommended. In addition, the validation
samples should:

7.3.3.1 Multivariately span the ranges of sample property
values over which the calibration will be used; that is, the span
and the standard deviation of the ranges of sample property
values for the validation samples should be at least 100 % of
the spans of the sample property values over which the
calibration will be used, and the sample property values for the
validation samples should be distributed as uniformly as
possible throughout their respective ranges, and the variations
of the sample property values among the samples should be as
mutually independent as possible; and

7.3.3.2 Span the ranges of the independent variables over
which the calibration will be used; that is, if the range of an
independent variable is expected to vary from a to b, and the
standard deviation of the independent variable is c, then the
variations of that independent variable in the set of validation
samples should cover at least 100 % of the range from a to b,
and should be distributed as uniformly as possible across the
range such that the standard deviation in that independent
variable estimated for the validation samples will be at least
95 % of c.

(1) When validating a calibration for which detection limit
or quantification limit is an important consideration, the user
should include a number of validation samples whose proper-
ty(s) are close to the detection or quantification limit(s)
sufficient to validate the respective limit(s) to the statistical
degree of confidence required for the application.

7.4 For quantitative calibrations, the validation error for
each property in each sample is given by the Standard Error of
Validation (SEV) and bias for that property.

7.4.1 The validation bias, ev
-, is a measure of the average

difference between the estimates made based on the empirical
model and the results obtained on the same validation samples
using the reference method.

7.4.1.1 If there are single reference values and estimates for
each validation sample, the validation bias is calculated as:

ev 5

(
i51

v

~v̂i — vi!

v (1)

where:
v̂i

= estimate from the model for the ith sample,
vi = accepted reference value for the ith sample, and
v = number of validation samples.

7.4.1.2 If replicate estimates and a single reference value are
available for the validation samples, then the validation bias is
calculated as:

ev 5

(
i51

v

(
j51

ri

~v̂ij – vi!

(
i51

v

ri

(2)

where:
v̂ij

= the jth estimate for the ith validation sample, and
ri = number of replicate estimates for the ith validation

sample.
7.4.1.3 If a single estimate and multiple reference values are

available for the validation samples, then the validation bias is
calculated as:

ev 5

(
i51

v

(
j51

ri

~v̂i – vij!

(
i51

v

si

(3)

where:
v̂i

= estimate for the ith validation sample,
vij = the jth reference value for the ith validation sample,

and
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si = number of replicate reference values for the ith
validation sample.

7.4.1.4 If multiple estimates and multiple reference values
are available for the validation samples, then the validation
bias is calculated as:

ev 5

(
i51

v

(
j51

ri

(
k51

si

~v̂ij – vik!

(
i51

v

risi

(4)

where:
v̂ij

= the jth estimate for the ith validation sample,
vik = the kth reference value for the ith validation sample,
ri = number of replicate estimates for the ith validation

sample, and
si = number of replicate reference values for the ith

validation sample.
7.4.2 The SEV, also called the Standard Error of Prediction

(SEP) and the Standard Deviation of Validation Residuals
(SDV), are measures of the expected agreement of the empiri-
cal model and the reference method. The calculation of SEV
and SDV depend on whether replicate estimates or reference
values, or both, are used.

7.4.2.1 If there are single reference values and estimates for
each validation sample, then SEV and SDV are calculated as:

SEV 5Œ(
i51

v

~v̂i – vi!
2

v (5)

SDV 5Œ(
i51

v

~v̂i – vi – ev!
2

v

where:
v̂i

= estimate from the model for the ith sample,
vi = accepted reference value for the ith sample, and
v = number of validation samples.

7.4.2.2 If replicate estimates and a single reference value are
available for the validation samples, then SEV and SDV are
calculated as:

SEV 5 !(
i51

v

(
j51

ri

~v̂ij – vj!
2

(
i51

v

ri

(6)

SDV 5 !(
i51

v

(
j51

ri

~v̂ij – vi – ev!
2

(
i51

v

ri

where:
v̂ij

= the jth estimate for the ith validation sample, and
ri = number of replicate estimates for the ith validation

sample.

NOTE 2—If each validation sample is estimated r times, an average
estimate could be used in 7.4.2.1, but then the SEV calculated would
represent the expected agreement between the average of r estimations
and a single reference measurement, not the agreement based on a single
estimation from the empirical model.

7.4.2.3 If a single estimate and multiple reference values are
available for the validation samples, then SEV and SDV are
calculated as:

SEV 5 !(
i51

v

(
j51

ri

~v̂i – vij!
2

(
i51

v

si

(7)

SDV 5 !(
i51
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~v̂i – vij – ev!
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(
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v

si

where:
v̂i

= estimate for the ith validation sample,

v̂ij
= the jth reference value for the ith validation sample,

and
si = number of replicate reference values for the ith

validation sample.

NOTE 3—If each validation sample has s reference values, an average
estimate could be used in 7.4.2.1, but then the SEV calculated would
represent the expected agreement between an estimate from the empirical
model and the average of s reference measurements, not a the agreement
relative to a single reference measurement.

7.4.2.4 If multiple estimates and multiple reference values
are available for the validation samples, then SEV and SDV are
calculated as:

SEV 5 !(
i51

v

(
j51

ri

(
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~v̂ij – vik!
2
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v

risi

(8)
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~v̂ij – vik – ev!
2

(
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v

risi

where:
v̂ij

= the jth estimate for the ith validation sample,

v̂ik
= the kth reference value for the ith validation sample,

ri = number of replicate estimates for the ith validation
sample, and

si = number of replicate reference values for the ith
validation sample.

NOTE 4—If each validation sample has r estimates and s reference
values, average estimates and reference values could be used in 7.4.1.1,
but then the SEV calculated would represent the expected agreement
between r estimates from the empirical model and the average of s
reference measurements, not a the agreement between a single estimate
and reference measurement.

7.4.3 Significance of Validation Bias—A t-value can be
calculated as:

t 5
evdv

SDV (9)

where:
dv = degrees of freedom and is equal to the denominator in

the bias calculation.

NOTE 5—The t-value is compared to a critical t-value for the desired
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probability level (typically 95 %).

7.4.3.1 If the calculated t-value is less than the critical
t-value, then the validation bias is not statistically significant
and the empirical model and reference method are expected to
on average yield the same result. In this case, either SEV or
SDV are adequate measures of the expected agreement be-
tween the empirical model and the reference method. If the
validation bias is of practical significance relative to the user
specified bias requirement, then the precision of the empirical
model results is insufficient to achieve the user requirement.

7.4.3.2 If the calculated t-value is greater than the critical
t-value, then the validation bias is statistically significant. In
this case SDV is a better measure of the expected agreement
between the results of the empirical model and the reference
method. While the bias may be statistically significant, it may
not be of practical significance relative to the user specified
requirements for the empirical model.

7.5 Positive and Negative Fractions Identified:
7.5.1 The Positive Fraction Identified of the calibration is

given by: Positive Fraction Identified = (number of samples
identified as having a stated characteristic) / (total number of
samples having the stated characteristic).

7.5.2 The Negative Fraction Identified of the calibration is
given by: Negative Fraction Identified = (number of samples
identified as not having a stated characteristic) / (total number
of samples not having the stated characteristic).

7.5.3 The equations for Positive Fraction Identified and
Negative Fraction Identified assume that the characteristic
being measured either is or isn’t present. It is not applicable to
tests with multiple possible outcomes.

7.6 The users should use statistical tests and decision
criteria appropriate to the application to decide if the SEV and
bias are within statistically acceptable limits.

7.7 Samples for Revalidation After Initial Deployment and
Ongoing Periodic Revalidation Samples:

7.7.1 The user must determine, based on the particulars of
each application, the appropriate timing and number of
samples required for revalidation after initial deployment and
for ongoing periodic revalidation.

7.7.1.1 The timing and number of revalidation samples may
be adjusted from time to time as experience is gained in
applying the calibration under actual conditions.

7.7.1.2 In many cases revalidation samples are restricted to
“samples of opportunity” and limited to samples from actual
production operations. In such cases, care should be taken to
schedule revalidation samples as asynchronously as possible
with respect to recurring conditions such as time of day,
production process operating conditions, phase or stage of
production process, ambient conditions, operating personnel,
etc. This listing of potential conditions for consideration is
exemplary, not comprehensive; the user should take into
account any external conditions pertinent to the application.

7.7.2 It is recommended that the results of ongoing periodic
revalidation should be monitored or tracked by control chart-
ing.

8. Qualification of Each Measurement Prior to
Application of the Validated Calibration

8.1 The independent variables measured from a sample
under test must be evaluated to ensure that this measurement is
qualified to be processed by the calibration to produce esti-
mates of the property(s) of interest. The purpose of this
qualification step is to determine, within user specified statis-
tical limits, if the validation samples used to validate the
calibration are sufficiently representative of (similar to) the
sample under test. If the measurement is qualified, the esti-
mates should fall within accuracy and precision bounds deter-
mined during the validation. If the measurement is not quali-
fied, then the accuracy and precision of the estimates are not
known based on the validation. The measurement of a sample
under test may be qualified using Mahalanobis distance,
Nearest Neighbor Mahalanobis Distance (NNMD), or Standard
Residual Variance in the Independent Variables (SRVIV),
either singly or in combination. The user may also specify
additional qualification criteria if and as appropriate to the
application.

8.1.1 The development of an empirical model will typically
involve transformation of the independent variables. By way of
illustration, such transformation may include one or more of
the following:

8.1.1.1 Linearization of the independent variables (for ex-
ample, conversion from transmission to absorbance, from
reflectance to log(1-reflectance), etc.);

8.1.1.2 Digital filtering (smoothing, digital derivatives);
8.1.1.3 Orthogonalization (Orthogonal Signal Correction);
8.1.1.4 Rank reduction (Principal Components Analysis

(PCA) or PLS);
8.1.1.5 Squares, cross products or nonlinear functions of

variables;
8.1.1.6 Explicit artifact removal (cosmic ray event re-

moval);
8.1.1.7 Centering or baseline correction;
8.1.1.8 Arbitrary scaling, variance scaling, or auto scaling;
8.1.1.9 Exclusion of one or more independent variables

from use in the calibration; and
8.1.1.10 Integration of peaks with or without baseline cor-

rection.
8.1.2 Mahalanobis distance, NNMD, and SRVIV statistics

are calculated after applying the same transformations to the
measurement being qualified which were applied to the mea-
surements used to produce and validate the calibration.

8.2 SRVIVs can sometimes be employed to determine if the
samples used to validate the empirical model are sufficiently
representative of (similar to) the sample under test. SRVIV is
intended to detect any anomalous variance which may be
present in the measurement from new signals (for example,
new chemical components, new instrumental or sample condi-
tions, etc.) that were not represented in the validation samples.
If the validation samples are sufficiently representative of the
(unknown) sample under test, then the amount of residual
variance in the independent variables of the sample under test
will be statistically indistinguishable from the amount of
residual variance in the validation samples. This is always a
necessary criterion for qualification testing, but it may not
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always be solely sufficient. If the empirical calibration utilizes
most of the non-noise portion of variance in the independent
variables, the residual variance will be a very sensitive measure
of any aberrant variance present in the data for the sample
under test. Alternatively, if the empirical model is based on a
small fraction of the non-noise portion of the variance in the
independent variable, then tests based on the statistics of the
SRVIV are unlikely, used alone, to provide adequate warning
of measurements, which are not qualified for estimation by the
calibration.

8.2.1 The residual variance in the independent variables is
defined as that fraction of the variance in the variables which
is not spanned by the validation samples’ basis space compris-
ing an appropriate number of abstract factors determined by
either PCA (1, 2)3 or PLS (1, 2). If the matrix P comprises
column vectors, each of which represents one of the factors
comprising the PCA basis space, the matrix A comprises
column vectors, each of which contains the independent
variables (for example, the spectrum) of a validation sample,
and the matrix R comprises column vectors, each of which is
the residual variance in each corresponding spectrum in A
which is not spanned by the basis space, then:

R 5 A – ~AT P PT
!
T (10)

and the standard residual (S.R.) is then given by:

S.R. 5Œ (
m50

r

(
n50

c

Rm,n
2

r 3 c – p – 1 (11)

where:
r = number of rows in A,
c = number of columns in A,
p = number of columns in P, and
(r 3 c – p – 1) = number of degrees of freedom of the

residuals.
8.2.1.1 For the purposes of this calculation, the user should

determine that all rows of the matrix of residuals have equal
variance and that all columns of the matrix of residuals have
equal variance before applying the equation for standard
residual.

8.2.1.2 If the abstract factors for the basis space were
calculated using PLS, Eq 11 is an approximation in that it does
not account for the fact that, in general, each additional PLS
factor does not reduce the degrees of freedom of the system by
exact integer amount.

8.2.1.3 PLS algorithms, depending upon how they are
implemented in software, can produce either orthogonal PLS
factors (often called the PLS loading weights) or non-
orthogonal PLS factors (often called the PLS loadings). Either
type of factors may be used for the basis space, but each type
of factor may yield different qualification results. The orthogo-
nal PLS loading weights will usually produce a standard
residual for the validation samples which is very close in
magnitude to the standard residual produced by the corre-
sponding number of PCA factors. The non orthogonal PLS

loadings will usually produce a standard residual for the
validation samples which is slightly or significantly larger than
the standard residual produced by the corresponding number of
PCA factors. Accordingly, the SRVIV test when using the PLS
loading weights may provide more sensitive detection of
unqualified samples in some cases.

8.2.2 After the S.R. is calculated for the validation samples,
a user specified confidence limit is then applied to the S.R. to
establish a range of expected S.R. values for samples that are
well represented by the validation samples. Based on the user
specified confidence limit users establish an upper cutoff for
the S.R. for samples under test.

8.2.3 If the column vector, B, contains the measurement of
the sample under test, the residual, R, of its independent
variables is given by:

and the standard residual, S.R., is then given by:

R 5 B – ~BT P PT
!
T (12)

and the standard residual (S.R.) is then given by:

S.R. 5Œ(R2

r – 1 (13)

where:
r = number of rows in B, and
r – 1 = number of degrees of freedom of the residuals.

8.2.4 If the S.R. value for the sample under test is less than
the cutoff value established by the user in accordance with
8.2.2, then the measurement of the sample under test is not
disqualified, with respect to residual variance in the indepen-
dent variables, for estimation by the calibration. In such cases,
the validation samples are sufficiently representative of the
sample under test that estimates should fall within the accuracy
and precision bounds determined during the validation.

8.2.5 If the S.R. value for the sample under test is greater
than the user established cutoff value, then the measurement of
the sample under test is not qualified, with respect to residual
variance in the independent variables, for estimation by the
calibration. Validation samples are not sufficiently representa-
tive of the sample under test and the accuracy and precision of
the estimates are not known based on the validation.

8.3 The Mahalanobis distance can indicate whether or not
the transformed variables for a sample under test fall within the
multivariate space defined by the transformed variables for the
validation sample set such that the sample under tests is an
interpolated rather than an extrapolated sample with respect to
the samples in the validation set. If the validation samples are
sufficiently representative of the sample under test, then the
Mahalanobis distance of the measurement with respect to the
centroid of the validation samples will be statistically indistin-
guishable from the Mahalanobis distances of the set of valida-
tion samples.

8.3.1 The Mahalanobis distance, h, of the sample under test
is given by:

h 5 xT
~XXT

!
21x (14)

where:
x = the mean centered vector containing the measured

values for the sample under test, and
3 The boldface numbers in parentheses refer to the list of references at the end of

this standard.
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