NORME INTERNATIONALE

ISO 1608-2

Deuxième édition 1989-12-01

Pompes à vide à jet de vapeur — Mesurage des caractéristiques fonctionnelles —

Partie 2:

iTeh Mesurage de la pression critique de refoulement

(standards.iteh.ai)

Vapour vacuum pumps - Measurement of performance characteristics -

Part 2: Measurement of critical backing pressure https://standards.iteh.ai/catalog/standards/sist/ca16ffbd-098c-423e-b0a8-dc4f588a554f/iso-1608-2-1989

ISO 1608-2: 1989 (F)

Avant-propos

L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.

Les projets de Normes internationales adoptés par les comités techniques sont soumis aux comités membres pour approbation, avant leur acceptation comme Normes internationales par le Conseil de l'ISO. Les Normes internationales sont approuvées conformément aux procédures de l'ISO qui requièrent l'approbation de 75 % au moins des comités membres votants.

(standards.iteh.ai)

La Norme internationale ISO 1608-2 a été élaborée par le comité technique ISO/TC 112, *Technique du vide.* ISO 1608-2:1989

https://standards.iteh.ai/catalog/standards/sist/ca16ffbd-098c-423e-b0a8-

Cette deuxième édition annule et remplace la première édition (ISO 1608-2: 1978), dont elle constitue une révision technique.

L'ISO 1608 comprendra les parties suivantes, présentées sous le titre général *Pompes à vide à jet de vapeur — Mesurage des caractéristiques fonctionnelles*:

- Partie 1: Mesurage du débit-volume (débit de pompage)
- Partie 2: Mesurage de la pression critique de refoulement
- Partie 3: Débit du gaz

© ISO 1989

Droits de reproduction réservés. Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

Organisation internationale de normalisation Case postale 56 • CH-1211 Genève 20 • Suisse Imprimé en Suisse

ISO 1608-2: 1989 (F)

Introduction

L'ISO 1608 a pour objet d'assurer que le mesurage des caractéristiques de fonctionnement des pompes à vide à jet de vapeur soit effectué, dans toute la mesure du possible, selon des procédés et dans des conditions uniformes. Le résultat souhaité est que les mesurages effectués par différents fabricants ou dans différents laboratoires, et les indications concernant le fonctionnement fournies par la documentation des fabricants, soient bien comparables tant au profit de l'utilisateur que du fabricant.

Il est envisagé que la Norme internationale complète englobe, en temps voulu, tous les mesurages des caractéristiques de fonctionnement des types principaux de pompes à vide à jet de vapeur. Toutefois, dans le but d'obtenir à bref délai des accords utiles dans un domaine plus restreint, l'ISO 1608 est publiée en différentes parties.

iTeh STANDARD PREVIEW (standards.iteh.ai)

Page blanche

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 1608-2 : 1989 (F)

Pompes à vide à jet de vapeur — Mesurage des caractéristiques fonctionnelles —

Partie 2:

Mesurage de la pression critique de refoulement

1 Domaine d'application

1.1 La présente partie de l'ISO 1608 prescrit une méthode de mesurage de la pression critique au refoulement des pompes à vide et à jet de vapeur.

NOTE — Il s'agit de la pression de refoulement au-dessus de laquelle les conditions de fonctionnement de la pompe sont affectées de telle façon que son comportement cesse d'être satisfaisant.

La dépendance entre le comportement d'une pompe à jet de vapeur et la pression au refoulement ne peut être définie d'une façon complète que par la courbe de variation de la pression à l'admission en fonction de celle au refoulement dans toute la gamme considérée.

https://standards.iteh.ai/catalog/standards
Dans nombre de cas, il suffit de préciser la condition ci-dessus iso-le
par un paramètre unique défini en 2.1. Dans d'autres cas, cependant, en particulier lors de fonctionnement en ultra-vide ou du
pompage de gaz comme l'hydrogène et l'hélium, la courbe complète peut être nécessaire.

- **1.2** Les pompes considérées comprennent les trois catégories suivantes de pompes à jet de vapeur d'huile ou de mercure:
 - éjecteur à vapeur pour le vide;
 - pompes à diffusion;
 - pompes à diffusion et à éjecteur.

2 Définitions

Pour les besoins de la présente partie de l'ISO 1608, les définitions suivantes s'appliquent.

2.1 pression critique de refoulement:

2.1.1 Cas général — La plus petite valeur de la pression au refoulement pour laquelle une légère augmentation de celle-ci détermine, du côté de l'admission de la pompe, une augmentation minimale spécifiée de la pression à l'admission pour un flux gazeux déterminé. Cette augmentation est définie par le pourcentage minimal spécifié de l'augmentation de la pression au refoulement.

NOTE — Pour les besoins de la présente partie de l'ISO 1608, le pourcentage minimal spécifié est fixé à 10 %.

- 2.1.2 pression critique à charge nulle: Valeur de la pression critique de refoulement pour une puissance d'aspiration nulle.
- 2.1.3 pression critique à pleine charge: Valeur de la pression critique de refoulement pour la puissance d'aspiration maximale, étant entendu que le fonctionnement de la pompe reste stable.
- 2.2 dôme d'essai: Enceinte de forme et de dimensions déterminées, montée à l'admission de la pompe et dans laquelle un débit de gaz peut être admis et mesuré. Elle est munie d'appareils de mesurage de la pression

so-1608-2-1989

2.3 pression limite: Valeur vers laquelle tend asymptotiquement la pression dans le dôme, le robinet d'admission de gaz étant fermé et la pompe fonctionnant normalement.

NOTE — En pratique, la pression limite est censée être atteinte après que la pompe ait fonctionné pendant un temps assez long pour que la réduction de la pression dans le dôme soit devenue négligeable.

3 Appareillage

3.1 Dôme d'essai, tel que représenté par la figure 1 et décrit dans l'ISO 1608-1.

La disposition générale du matériel d'essai doit être conforme à la figure 2. Le matériel suivant est nécessaire:

- Robinet réglable (A) d'admission de gaz dans le dôme d'essai combiné avec un dispositif convenable de mesurage du flux.
- 2) Robinet réglable (B) d'admission de gaz, monté à l'entrée de la pompe primaire, pour régler la pression au refoulement.

Il convient que la longueur de la tuyauterie de refoulement entre le robinet (B) et le point d'attache du manomètre-tube soit supérieure à 200 mm (voir figure 2).

3) Manomètre (C), destiné à mesurer la pression dans la tuyauterie de refoulement, situé près de l'ouverture d'évacuation de la pompe à jet de vapeur. Ce manomètre est installé

dans une partie rectiligne et uniforme de la tuyauterie de refoulement dont le diamètre est égal à celui de l'ouverture d'évacuation de la pompe à jet de vapeur. Le tube d'attache du manomètre doit être perpendiculaire à l'axe de cette tuyauterie et affleurer la paroi intérieure de celle-ci.

Il convient de choisir les dimensions du tube d'attache du manomètre (C) de façon à assurer sa conductance maximale. Il convient que la longueur de la tuyauterie de refoulement entre le point d'attache du manomètre-tube et la sortie de la pompe ne dépasse pas 150 mm.

4) Manomètre (D), destiné à mesurer la pression dans le dôme d'essai. La saillie du manomètre D dans le dôme d'essai ne doit pas excéder 0,5 fois le diamètre (d_2) du manomètre-tube d'attache.

Les manomètres destinés à mesurer la pression doivent être étalonnés à ± 5 % pour les pressions supérieures ou égales à 1 $Pa^{1)}$, et à \pm 10 % pour les pressions inférieures à cette valeur.

3.2 Gaz d'essai: sauf spécification contraire, le gaz d'essai doit être de l'air séché.

NOTE - Le séchage de l'air au moyen de silica-gel, par exemple, est généralement satisfaisant. iTeh STANDA

Méthode d'essai

Généralités

ment, la pompe à jet de vapeur doit fonctionner avec la quantité et le type de fluide moteur, la puissance de chauffage et de refroidissement conformes aux spécifications du constructeur.

La température ambiante doit être comprise entre 15 °C et 25 °C pendant la durée de l'essai. La pompe doit avoir atteint son équilibre thermique avant le déroulement des essais. Le dôme doit être évacué jusqu'à obtention de la pression limite avant toute introduction de gaz. Dans ces conditions, la température de l'appareillage au-dessus de l'entrée de la pompe (voir figure 1) et de la tuyauterie entre la bride de la sortie de la pompe et le robinet B (voir figure 2) devrait être uniforme à \pm 1 °C et doit être comprise entre 15 °C et 25 °C.

NOTE - La pression critique de refoulement peut être mesurée à d'autres températures ambiantes. Dans ce cas, il convient d'assurer les conditions convenables de fonctionnement des instruments de mesure.

4.2 Mesurage à charge nulle

Lorsque la pression dans le dôme d'essai a atteint la valeur limite, le robinet d'admission du gaz (B), sur la tayauterie de refoulement, est ouvert progressivement de sorte que la pression au refoulement augmente peu à peu. Ceci est poursuivi jusqu'à ce que la condition spécifiée dans la note de 2.1.1 soit approximativement obtenue. Cette région critique est alors

explorée plus en détail par une manipulation appropriée du robinet d'admission (B). Une courbe de la pression à l'admission en fonction de la pression au refoulement est tracée. Le point de cette courbe correspondant à la condition mentionnée dans la note de 2.1.1 donne alors la pression critique à charge nulle. La pression initiale dans la tuyauterie de refoulement, lorsque le débit du gaz est nul, doit être inférieure à 10 % de la pression critique mesurée.

4.3 Mesurage à pleine charge et à charge intermédiaire

4.3.1 Le robinet d'admission de gaz (A) sur le dôme d'essai est alors ouvert jusqu'à ce que la pression à l'admission désirée soit atteinte et la puissance d'aspiration admise est mesurée. L'essai d'admission de gaz par le robinet (B) décrit en 4.2 est alors répété, le robinet (B) étant fermé entre les opérations successives, jusqu'à ce que la puissance d'aspiration maximale soit atteinte dans des conditions de fonctionnement normal et stable de la pompe.

NOTE - La puissance d'aspiration maximale dans des conditions stables de fonctionnement de la pompe dépend du débit de la pompe primaire. Si celui-ci n'est pas supérieur au flux maximal effectif, pour des conditions normales de fonctionnement de la pompe à jet de vapeur, divisé par la pression critique de refoulement correspondant à ce flux, il est nécessaire de refaire l'essai en utilisant une pompe primaire de débit suffisant pour permettre d'atteindre cette puissance d'aspiration maximale effective.

(standards itch ai)
Durant les essais décrits en 4.2 et 4.3.1, la puissance électrique absorbée par la pompe à jet de vapeur doit être com-ISO 1608prise entre des limites ne dépassant pas ± 4 % de sa valeur https://standards.iteh.ai/catalog/standanominale.| Elle doit@tre_maintenue entre ces limites durant au Pour les besoins du mesurage de la pression critique de réfoule 554//isomoins 30 min avant le début de l'essai. Le débit de l'eau de refroidissement doit être maintenu constant entre des limites ne dépassant pas ± 10 % de la valeur recommandée par le fabricant.

Rapport d'essai

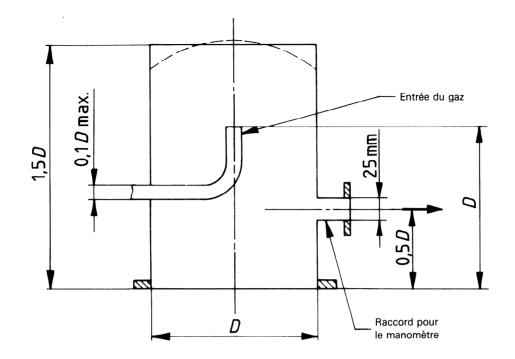
5.1 Résultats d'essai

La pression critique de refoulement doit être exprimée en pascals (Pa) et le flux en pascals litres par seconde (Pa·I/s). Sauf avis contraire, un graphique en fonction du flux de gaz doit être établi. L'augmentation en pourcentage de la pression d'entrée utilisée pour définir la pression critique de refoulement en 2.1.1 doit être notée sur le graphique.

Dans le cas où il ne se produit pas d'augmentation soudaine de la pression d'admission, un graphique donnant la variation de la pression à l'admission en fonction de la pression au refoulement doit être établi pour une charge nulle.

5.2 Conditions d'essai

Le rapport d'essai doit comporter les conditions régnant durant


a) types et conditions de fonctionnement de tous les manomètres utilisés;

¹⁾ $100 \text{ Pa} = 100 \text{ N/m}^2 = 1 \text{ mbar}$

ISO 1608-2: 1989 (F)

- b) puissance de chauffage de la pompe et limites de variation de celle-ci pendant l'essai;
- c) températures maximale et minimale de l'eau de refroidissement ou du réfrigérant de la pompe à jet de vapeur pendant l'essai, à l'entrée et à la sortie;
- d) débit de l'eau de refroidissement (dans le cas où de l'eau est utilisée);
- e) températures ambiantes maximale et minimale pendant l'essai;
- f) type et quantité du fluide de la pompe à jet de vapeur;
- g) le cas échéant, toute description particulière du transfert de chaleur vers l'environnement.

iTeh STANDARD PREVIEW (standards.iteh.ai)

iTeh STrigure 1D Dome DessalREVIEW (standards.iteh.ai)

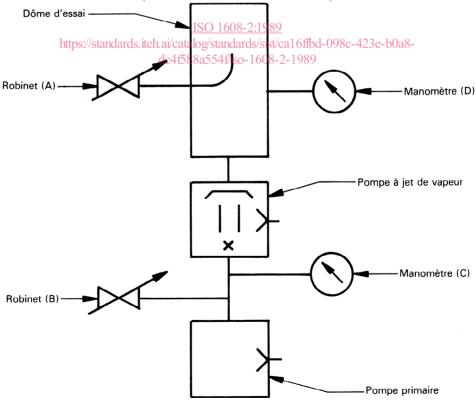


Figure 2 — Disposition générale du matériel d'essai

4

Page blanche

iTeh STANDARD PREVIEW (standards.iteh.ai)