INTERNATIONAL STANDARD

Second edition 2016-08-01

Packaging — Complete, filled transport packages and unit loads — Vertical random vibration test

Emballages — Emballages d'expédition complets et pleins et charges unitaires — Essais de vibration verticale aléatoire

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13355:2016 https://standards.iteh.ai/catalog/standards/sist/a0e89e3e-c140-41db-a8fd-9cdf9a675b75/iso-13355-2016

Reference number ISO 13355:2016(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13355:2016 https://standards.iteh.ai/catalog/standards/sist/a0e89e3e-c140-41db-a8fd-9cdf9a675b75/iso-13355-2016

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Foreword		iv
		v
1	Scope	
2	Normative references	
3	Principle	
4	Apparatus4.1Vibration table4.2Vibration measurement, data storage and control system	1 1 2
5	Sampling5.1Test specimen preparation5.2Conditioning	2 2 2
6	Procedure	2
7	Test report	
Ann	nex A (normative) Power spectral density in generic transportation	5
Ann	nex B (informative) Power spectral densities derived from recorded data	6
Bibl	liography	
	iTeh STANDARD PREVIEW	

(standards.iteh.ai)

ISO 13355:2016 https://standards.iteh.ai/catalog/standards/sist/a0e89e3e-c140-41db-a8fd-9cdf9a675b75/iso-13355-2016

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

The committee responsible for this document is ISO/TC 122, *Packaging*, Subcommittee SC 3, *Performance requirements and tests for means of packaging, packages and unit loads*.

This second edition cancels and replaces the first edition (ISO 13355:2003), which has been technically revised. 9cdf9a675b75/iso-13355-2016

Some of the major modification points are listed as follows:

- a) <u>Annex A</u> has been changed from Informative to Normative;
- b) in <u>Table A.1</u>, 0,048 (m/s²)² at 3 Hz, Slope between 3 Hz to 6 Hz, 1,154 (m/s²)² at 6 Hz to 18 Hz has been changed to 0,048 (m/s²)² at 2 Hz, Slope between 2 Hz to 4 Hz, 1,154 (m/s²)² at 4 Hz to 18 Hz;
- c) <u>Annex B</u> has been added.

Introduction

A random vibration test is a more realistic method in reproducing environmental vibration during transportation than sinusoidal vibration test. For this reason, if suitable laboratory facilities are available, a vibration test is more preferable than any fixed or swept frequency sinusoidal vibration tests similar to those given in ISO 2247 and ISO 8318.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13355:2016 https://standards.iteh.ai/catalog/standards/sist/a0e89e3e-c140-41db-a8fd-9cdf9a675b75/iso-13355-2016

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13355:2016 https://standards.iteh.ai/catalog/standards/sist/a0e89e3e-c140-41db-a8fd-9cdf9a675b75/iso-13355-2016

Packaging — Complete, filled transport packages and unit loads — Vertical random vibration test

1 Scope

This International Standard specifies a method to carry out a vertical random vibration test on a complete, filled transport package(s) and unit loads using random excitation¹⁾. This document also provides methods for assessing the performance of a package in terms of its strength or the protection that it offers to its contents when it is subjected to vertical vibration. The test discussed in this document can be performed either as a single test to investigate the effects of vertical vibration, or as a part of a sequence of tests designed to measure the ability of a test specimen to withstand a distribution system that includes a vibration hazard.

NOTE In this International Standard, a package or unit load is referred to as test specimen.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 2206, Packaging — Complete, filled transport packages — Identification of parts when testing ISO 13355:2016

ISO 2233, Packaging the Complete filled transport packages and unit loads as Conditioning for testing 9cdf9a675b75/iso-13355-2016

ISO 2234, Packaging — Complete, filled transport packages and unit loads — Stacking tests using a static load

3 Principle

The test specimen is placed on a vibration table and made to vibrate using random excitation with an effective frequency range for the test specimen. Atmospheric conditions, test duration, acceleration power spectral density, attitude of the test specimen and method of restraint are predetermined.

Specific requirements for mounting a test specimen on the vibrating platform are given in ISO 4180:2009, 10.7.1.

NOTE When required, a load is superimposed on the test specimen to simulate the conditions at the bottom of a stack.

4 Apparatus

4.1 Vibration table

A table of sufficient size and performance (in terms of power, displacement, frequency range) capable of being stiff (its lower resonant frequency shall be higher than the higher test frequency) and remaining horizontal during the test.

¹⁾ Random vibration theory is discussed in IEC 60068-2-64.

The frequency range shall be 2 Hz to 200 Hz, with a resolution of at least 1 Hz. By considering the resonance frequency of the seismic-base of the test equipment, the frequency range at the low end may be modified based on the agreement between the involved stakeholders or on the technical instruction of the test equipment.

The table may be equipped with the following components:

- Low fences restricting sideways and endways movements during testing;
- High fences or other means of maintaining a superimposed load in position on the test specimen during testing.

Furthermore, the apparatus shall meet the requirements and tolerances of <u>Clause 6</u>.

4.2 Vibration measurement, data storage and control system

A system comprising accelerometers, signal conditioners and a computer, capable of:

- generating vibration with the required power spectral density;
- controlling the motion of the vibration table by feeding back the signal from the control accelerometer which monitors the table acceleration;
- performing the analysis with at least 120 statistical degrees of freedom; and
- having data acquisition and control channels with a response accurate to 5 % over the frequency range specified for the test.
 (standards.iteh.ai)

5 Sampling

ISO 13355:2016 https://standards.iteh.ai/catalog/standards/sist/a0e89e3e-c140-41db-a8fd-9cdf9a675b75/iso-13355-2016

5.1 Test specimen preparation

The test specimen shall normally be filled with its intended contents. However, simulated or substituted contents may be used, provided that the dimensions and physical properties of such contents are as close as possible to those of the intended contents.

Ensure that the test specimen is closed normally, as if ready for distribution. If simulated or substituted contents are used, ensure that the normal method of closure is still employed.

5.2 Conditioning

Condition the test specimen in accordance with ISO 2233.

6 Procedure

Carry out the test in the same atmospheric conditions as used for conditioning where this is critical to the performance of the test specimen.

In other circumstances, the test shall be carried out in atmospheric conditions which are as near as practicable to those used for conditioning.

Place the test specimen in the predetermined attitude on the vibration table (see <u>4.1</u>), with the centre of gravity placed as near as practicable to the centre of the table; if the test specimen is not secured to the table it may be fenced. If a superimposed load is required, the loading procedure shall comply with ISO 2234.

Measure the imposed acceleration of the vibration table as closely as possible to the test specimen.

Ensure the horizontal components of the acceleration are no greater than 20 % of the value of the vertical component.

Start the test at 6 dB below the test level to allow the system to equalize the power spectral density profile, then carefully adjust the level to reach full test level and continue the test for the predetermined duration.

The test duration and the power spectral density of the vibration table, in absence of experimental data concerning the effects of transportation to be reproduced, should be chosen as indicated in <u>Annex A</u>.

When distribution system and intensity of vibration acceleration are partly known, the test duration and the power spectral density of the vibration table may be chosen from <u>B.1</u> or <u>B.2</u>, as indicated.

NOTE Vibration spectra depend very much on the transport conditions such as road conditions or vehicle type which selected. Therefore, whenever possible, perform tests with spectra obtained from measured data of the particular transportation conditions.

The test schedule may be changed as agreed by the involved stakeholders. In this case, the change and the reason should be added to the test report.

The tolerance on root mean square acceleration shall not exceed 15 %; the obtained acceleration power spectral density of the test control signal shall not deviate by more than \pm 3 dB over the entire test frequency range.

Tests may be interrupted at any time to allow visual inspection of the test specimen, or for any other purpose.

iTeh STANDARD PREVIEW

7 Test report

(standards.iteh.ai)

The test report shall include the following information:

- reference to this International Standard, i.e. ISO 13355;
- name and address of the testing laboratory and of the customer;
- unique identification of the report;
- date of receipt of the test specimens and the date(s) of performance of test;
- name, title and signature of the person(s) accepting responsibility for the test report;
- note stating that test results relate only to the specimens tested;
- note stating that the report shall not be reproduced, except in full, without the written approval of the testing laboratory;
- number of test specimens tested;
- full description, including dimensions, mass, structural and material specifications of the test specimen and its fittings, cushioning, blocking, closure or reinforcing arrangements, in accordance with ISO 2206;
- description of the contents, i.e. if simulated or substituted contents were used, full details shall be given;
- gross mass of the test specimen;
- relative humidity, temperature and time of conditioning, as well as the temperature and relative humidity of the test area at the time of test, noting whether these values conform to the requirements of ISO 2233;