

INTERNATIONAL STANDARD

ISO
8728

Third edition
2014-08-01

Ships and marine technology — Marine gyro-compasses

Navires et technologie maritime — Compas gyroscopiques à usage marin

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 8728:2014](#)

<https://standards.iteh.ai/catalog/standards/iso/4ed0fdf0-d2f5-49d6-84d4-37241d2e9599/iso-8728-2014>

Reference number
ISO 8728:2014(E)

© ISO 2014

iTeh Standards

(<https://standards.iteh.ai>)

Document Preview

[ISO 8728:2014](#)

<https://standards.iteh.ai/catalog/standards/iso/4ed0fdf0-d2f5-49d6-84d4-37241d2e9599/iso-8728-2014>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents

Page

Foreword	iv
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Construction	2
5 Performance requirements	4
5.1 Accuracy in latitudes up to 60°	4
5.2 Interface	5
6 Type tests	5
6.1 General	5
6.2 Settling time test	5
6.3 Settle point error test	5
6.4 Settle point heading repeatability test	5
6.5 Settling time on a Scorsby table	6
6.6 Scorsby test	6
6.7 Intercardinal motion test	7
6.8 Repeater accuracy test	7
6.9 Speed correction test	7
6.10 General requirement test	8
6.11 Interface test	10
7 Marking	10
8 Information	10
Annex A (normative) Advice to ship surveyors for installation of gyro-compasses and repeater compasses on board ships	11
Annex B (informative) Equivalent requirements in ISO 8728 and IMO Resolution	12
Bibliography	14

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 8, *Ships and marine technology*, Subcommittee SC 6, *Navigation and ship operations*.

This third edition cancels and replaces the second edition (ISO 8728:1997), which has been technically revised.

[ISO 8728:2014](http://www.iso.org/iso/iso_8728)

<https://standards.iteh.ai/catalog/standards/iso/4ed0fd0-d2f5-49d6-84d4-37241d2e9599/iso-8728-2014>

Ships and marine technology — Marine gyro-compasses

1 Scope

This International Standard specifies the construction, performance, and type testing for gyro-compasses required by Regulation 12 of Chapter V of SOLAS 1974 (as amended).

NOTE All requirements that are extracted from the recommendations of IMO Resolutions [Resolution A.424(XI) on performance standards for gyro-compasses] are printed in italics.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 25862, *Ships and marine technology — Marine magnetic compasses, binnacles and azimuth reading devices*

IEC 60945, *Maritime navigation and radiocommunication equipment and systems — General requirements — Methods of testing and required test results*

IEC 61162-1, *Marine navigation and radiocommunication equipment and systems — Digital interfaces - Part 1: Single talker and multiple listeners*

IEC 61162-2, *Maritime navigation and radiocommunication equipment and systems — Digital interfaces — Part 2: Single talker and multiple listeners, high-speed transmission*

IEC 61924-2, *Maritime navigation and radiocommunication equipment and systems — Integrated Navigation Systems (INS) — Part 2: Modular structure for INS — Operational and performance requirements, methods of testing and required test results*

IMO Resolution MSC.252(83), *Performance standards for alert communications with an Integrated Navigation System*

IMO Resolution MSC.302(87), *Performance standards for bridge alert management*

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

gyro-compass

complete equipment including all essential elements of the complete design, including both the gyro-compass as heading sensor and the associated heading transmission system

3.2

true heading

horizontal angle between the vertical plane passing through the true meridian and the vertical plane passing through the ship's fore-and-aft datum line; it is measured from true north (000°) clockwise through 360°

Note 1 to entry: When the gyro-compass equipment is not installed on board ship, this "true heading" is regarded as the true heading of the lubber line. Where a gyro-compass has the facility of introducing a correction by moving the lubber line, the correction is set for the local latitude.

3.3

settled

stable situation when *any three readings taken at intervals of 30 min are within a band of 0,7°, with the compass level and stationary*

Note 1 to entry: The settling time is the elapsed time between the time of switch-on at the initial heading error and the third recording of the settle.

3.4

settle point heading

mean value of ten readings taken at 20 min intervals after the compass has settled as defined in 3.3

3.5

settle point error

difference between the settle point heading as defined in 3.4 and the true heading

3.6

error

difference between the observed value and the settle point heading as defined in 3.4

3.7

bearing repeater compass

device that reproduces the master compass card at a remote location

3.8

compass card

graduated dial of the compass which indicates the measured direction of the meridian

3.9

latitude error

error to which some gyro-compasses are subject, the magnitude and sign of which depend upon the local latitude

Note 1 to entry: Means are provided for correcting this error.

[ISO 8728:2014](#)

3.10 <https://standards.iteh.ai/catalog/standards/iso/4ed0fd0-d2f5-49d6-84d4-37241d2e9599/iso-8728-2014>

speed error

error to which gyro-compasses are subject, the magnitude and sign of which depend upon the speed, course, and latitude of the ship

Note 1 to entry: Means are provided for correcting this error.

3.11

lubber line

index line situated on the body of a compass against which the compass heading is read

3.12

master compass

main compass unit which supplies the heading information to the repeaters and other navigational aids

3.13

scorsby table

test machine which independently oscillates a platform about three axes; it is used to simulate the motion of a ship

4 Construction

Gyro-compass units shall conform to the following requirements.

4.1 *The equipment shall be capable of continuous operation under conditions of vibration, humidity, change of temperature and variations of the power supply as specified in 6.10.1 to 6.10.5.*

4.2 For those ships which are required to carry bearing repeater compasses, the construction of these shall be as follows.

- a) The bearing repeater compass shall be designed to be fitted with an azimuth reading device.
- b) A gimbal mechanism shall be provided to enable the bearing repeater compass card to be held horizontally against the ship's motion.
- c) Any bearing repeater compass intended for use on an open deck shall be waterproof.

4.3 *The compass card shall be graduated at equal intervals of 1° or fraction thereof.*

The graduation error shall be less than ±0,2°.

A numerical indication shall be provided at least at every 10°, starting from 000° clockwise through 360°.

4.4 *Fully adequate illumination shall be provided to enable the reading of all compass cards at all times. Facilities for dimming shall be provided.*

4.5 Both master compass and repeater compasses shall be provided with a lubber line to indicate the ship's heading.

4.5.1 The base or some other fixed extremity of the compass shall be marked or identified in such a way as to facilitate the installation of the compass in a ship, so that the lubber line lies in a vertical fore-and-aft plane of the ship. Where a gyro-compass has the facility of introducing a correction by moving the lubber line, the correction during installation shall be set to zero.

If such marks or identifications are not in the same vertical planes as the uncorrected lubber line, then the horizontal angular relationship between them shall be clearly indicated.

<https://standards.iteh.ae/catalog/standards/iso/4ed0fd0-d2f5-49d6-84d4-37241d2e9599/iso-8728-2014>
4.6 *Means shall be provided for correcting the errors induced by speed and latitude.* Graphical or tabular means of correction can be used.

4.7 *Steps shall be taken to eliminate as far as is practical, the causes of and to suppress electromagnetic interference between the gyro-compass and other equipment on board.*

4.8 *Mechanical noise from all units shall be so limited as to ensure the hearing of sounds on which the safety of the ship may depend.*

4.9 *The equipment shall be so constructed that it is readily accessible for maintenance purposes.*

4.10 *An automatic alert¹⁾ shall be provided to indicate malfunctions of the system or a power failure in the gyro-compass. The alert shall conform to the presentation and handling requirements of Bridge Alert Management [IMO Res. MSC.302(87)]. A suitable interface shall be provided for alert communications with an Integrated Navigation System [IMO Res. MSC.252(83) and IEC 61924-2].*

The following sentences shall be provided for the alert communications interface:

Sentences transmitted by the gyro-compass:

- ALR, HBT: See IEC 61162-1;

1) The term "alarm" was replaced by "alert" in accordance with IMO Resolution MSC.252(83) and IMO Resolution MSC.302(87).

- ALC, ALF, ARC: See IEC 61924-2.

Sentences received by the gyro-compass:

- ACK, HBT: See IEC 61162-1;
- ACN: See IEC 61924-2.

4.11 *Means shall be incorporated for the protection of the equipment from excessive currents and voltages, transients and accidental reversal of power supply polarity.*

4.12 *If provision is made for operating the equipment from more than one source of electrical energy, arrangements for rapidly changing from one source of supply to the other shall be incorporated.*

4.13 The gyro-compass shall be designed to enable heading information to be provided to other navigational aids.

5 Performance requirements

5.1 Accuracy in latitudes up to 60°

5.1.1 Settling time

When switched on in accordance with the manufacturer's instructions, the compass shall settle within 6 h.

5.1.2 Settle point error (<https://standards.iteh.ai>)

5.1.2.1 *The settle point error as defined in 3.5 at any heading shall not exceed $\pm 0,75^\circ \times \secant \text{ latitude}$, and the RMS value of the differences between individual heading indications and the mean value shall be less than $0,25^\circ \times \secant \text{ latitude}$.*

[ISO 8728:2014](https://standards.iteh.ai/catalog/standards/iso/4ed0fd0-d2f5-49d6-84d4-37241d2-0599/iso-8728-2014)

5.1.2.2 *The repeatability of settle point error from one run-up to another shall be within $0,25^\circ \times \secant \text{ latitude}$.*

5.1.3 Settling time under operational conditions

When switched on in accordance with the manufacturer's instructions, the compass shall settle within 6 h when rolling and pitching with simple harmonic motion of any period between 6 s and 15 s, a maximum angle of 5°, and a maximum horizontal acceleration of 0,22 m/s².

5.1.4 Settle point error under general conditions

The repeatability of the settle point error of the master compass shall be within $\pm 1^\circ \times \secant \text{ latitude}$ under the general conditions and including variations in magnetic fields likely to be experienced in the ship in which it is installed.

5.1.5 Residual error in correction

The residual steady-state error, after correction for speed and course influences at a speed of 20 kn, shall not exceed $\pm 0,25^\circ \times \secant \text{ latitude}$.

5.1.6 Effect of alteration of speed

The error due to a rapid alteration of speed of 20 kn shall not exceed $\pm 2^\circ$.

5.1.7 Effect of alteration of course

The error due to a rapid alteration of course of 180° at a speed of 20 kn shall not exceed ±3°.

5.1.8 Accuracy on a Scorsby table

The transient and steady-state errors due to rolling, pitching, and yawing, with simple harmonic motions of any period between 6 s and 15 s, maximum angles of 20°, 10°, and 5° respectively, and a maximum horizontal acceleration not exceeding 1 m/s², shall not exceed ±1° × secant latitude.

5.1.9 Synchronization between the master compass and repeaters

Once the repeaters have been synchronized with the master, *the maximum divergence in reading between the master compass and repeaters under all operational conditions shall not exceed ±0,5°*; for the purposes of this requirement, the latitude and speed correction shall be assumed equal to zero.

5.2 Interface

5.2.1 The compass shall provide interface facilities which meet the relevant international standards IEC 61162-1 and/or IEC 61162-2 as amended.

5.2.2 The gyro-compass equipment shall provide an appropriate data source and at least one output of heading information, which is able to comply with the IEC 61162-2. The IEC 61162-2 heading output shall be updated at a rate of once per 20ms. The THS sentence detailed in IEC 61162-1 shall be provided for heading information.

5.2.3 The test of the interface shall meet the performance test specified in [6.8](#) as well as for repeaters.

6 Type tests

[ISO 8728:2014](#)

6.1 General

<http://standards.iteh.ai/catalog/standards/iso/4ed0fdf0-d2f5-49d6-84d4-37241d2e9599/iso-8728-2014>

6.1.1 Unless otherwise stated in this International Standard, the requirements of IEC 60945 shall apply.

6.1.2 The construction of the gyro-compass shall conform to the requirements specified in [Clause 4](#).

6.2 Settling time test

The master compass shall be securely positioned on a nominally level and stationary base. It shall be energized from nominal value power supplies and started in accordance with the manufacturer's instructions from an initial heading error (high) of 30° or more.

The settling time (see [3.3](#)) shall meet the requirements of [5.1.1](#).

6.3 Settle point error test

When the master compass has settled as defined in [3.3](#), the settle point error (see [3.5](#)) shall conform to the requirements specified in [5.1.2.1](#).

6.4 Settle point heading repeatability test

The master compass shall be started in accordance with the manufacturer's instructions from an initial heading error (high) of 30° or more and shall be allowed to settle.

The settle point heading shall be determined as specified in 3.4. The master compass shall then be switched off for a period of not less than 12 h and not more than 7 days and then started again from an initial heading error (low) of 30° or more and the settle point heading measured again. The master compass shall then be switched off for a period of not less than 12 h and not more than 7 days and then started again from an initial heading error (high) of 30° or more and the settle point heading determined. The three values of settle point heading so obtained shall be recorded and the difference between any two shall not exceed $0,25^\circ \times \secant \text{ latitude}$.

NOTE If this test follows the text described in 6.3, then the “settle” obtained from that text can be used as the first value required by this repeatability test provided that the second “settle” follows a switch off period of not less than 12 h and not more than 7 days.

6.5 Settling time on a Scorsby table

The master compass shall be mounted on a Scorsby table with the master compass fore-and-aft line nominally parallel with one axis of the table which shall be designated the roll axis.

The other nominally horizontal axis at right angles to the first shall be designated the pitch axis.

The compass shall then be switched on in accordance with the manufacturer's instructions with the following nominal simple harmonic table motions:

- roll axis: Peak amplitude $5^\circ \pm 1^\circ$, period $15 \text{ s} \pm 1 \text{ s}$;
- pitch axis: Peak amplitude $5^\circ \pm 1^\circ$, period $6 \text{ s} \pm 1 \text{ s}$.

The settling time measured between switch-on and compass settle as defined in 3.3 shall conform to the requirements specified in 5.1.3.

NOTE Compass readings to determine the settle condition may be taken with the Scorsby table stationary and nominally level, and with a minimum delay before resuming the specified table motion.

6.6 Scorsby test

The master compass shall be settled on the Scorsby table with the table stationary, nominally level and its roll axis aligned north-south within $\pm 1^\circ$.

The compass lubber line shall be aligned to within $\pm 1^\circ$ of the table roll axis. The following nominal simple harmonic motions shall be applied simultaneously to the three axes of the table for 25 min:

- roll axis: Peak amplitude $20^\circ \pm 2^\circ$, period $10 \text{ s} \pm 1 \text{ s}$;
- pitch axis: Peak amplitude $10^\circ \pm 1^\circ$, period $6 \text{ s} \pm 1 \text{ s}$;
- yaw axis: Peak amplitude $5^\circ \pm 1^\circ$, period $15 \text{ s} \pm 1 \text{ s}$.

At the end of 25 min, the table motion shall be stopped, the table returned to its original position and the compass heading recorded without delay.

This test shall be repeated with the roll axis of the motion table aligned at $045^\circ \pm 1^\circ$, at $090^\circ \pm 1^\circ$ and at $315^\circ \pm 1^\circ$. At each of these headings, the compass settle point shall be determined before commencing the table motion and any change of heading indicated by the compass between the settle point heading immediately prior to the motion and the heading at the conclusion of the motion shall be recorded as error due to motion.

In each of the four tests, the error due to the motion shall be less than $\pm 1^\circ \times \secant \text{ latitude}$.

Any horizontal accelerations applied during this test shall not exceed 1 m/s^2 .