

SLOVENSKI STANDARD**oSIST prEN 17156:2017****01-oktober-2017**

Kozmetika - Analizne metode - Metoda LC/UV za identifikacijo in kvantitativno določevanje 22 organskih UV-filtrov, ki se v EU uporabljajo v kozmetičnih izdelkih

Cosmetics - Analytical methods - LC/UV method for the identification and quantitative determination in cosmetic products of the 22 organic UV filters in use in the EU

Kosmetische Mittel - Untersuchungsverfahren - LC/UV Verfahren für die Identifizierung und qualitative Bestimmung von den 22 in der EU verwendeten organischen UV-Filtern in kosmetischen Produkten

<https://standards.iteh.ai>

Cosmétiques - Méthodes analytiques - Procédé CL/UV pour l'identification et la détermination quantitative des 22 filtres UV organiques utilisés dans les produits cosmétiques au sein de l'UE

[SIST EN 17156:2019](#)

<https://standards.iteh.ai/catalog/standards/sist/56cfa70a-61b4-4006-856b-e1ec1dbba55b/sist-en-17156-2019>

ICS:

71.100.70 Kozmetika. Toaletni
 pripomočki

Cosmetics. Toiletries

oSIST prEN 17156:2017

en,fr,de

EUROPEAN STANDARD
NORME EUROPÉENNE
EUROPÄISCHE NORM

DRAFT
prEN 17156

August 2017

ICS 71.100.70

English Version

Cosmetics - Analytical methods - LC/UV method for the identification and quantitative determination in cosmetic products of the 22 organic UV filters in use in the EU

Cosmétiques - Méthodes analytiques - Procédé CL/UV pour l'identification et la détermination quantitative des 22 filtres UV organiques utilisés dans les produits cosmétiques au sein de l'UE

Kosmetische Mittel - Untersuchungsverfahren - LC/UV Verfahren für die Identifizierung und qualitative Bestimmung von den 22 in der EU verwendeten organischen UV-Filtern in kosmetischen Produkten

This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee CEN/TC 392.

If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a European Standard.

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

Contents

	Page
European foreword	3
Introduction	4
1 Scope	6
2 Principles	6
3 Reagents	6
4 Apparatus and equipment	8
5 Procedure	9
5.1 Sample preparation	9
5.2 LC-UV/Vis measurement conditions	9
6 Evaluation	13
6.1 Identification	13
6.2 Quantitative determination	13
7 Test report	14
Annex A (informative) Results of the intra-laboratory validation	15
A.1 General	15
A.2 Water-soluble UV filters	15
A.3 Fat-soluble UV filters group (https://standards.iteh.ai)	18
A.4 UV filter P15	22
Annex B (informative) Results of the inter-laboratory validation (Ring trial)	24
B.1 General	24
B.2 Water-soluble UV filters ring trial (https://oist/56cf70a96db4996856b91001dbbc55b/oist.cn)	24
B.3 Fat-soluble UV filters ring trial	25
B.4 UV filter P15 ring trial	28
Bibliography	29

European foreword

This document (prEN 17156:2017) has been prepared by Technical Committee CEN/TC 392 "Cosmetics", the secretariat of which is held by AFNOR.

This document is currently submitted to the CEN Enquiry.

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[SIST EN 17156:2019](#)

<https://standards.iteh.ai/catalog/standards/sist/56cfa70a-e6db-4996-856b-e1ec1dbba55b/sist-en-17156-2019>

Introduction

It is well-known that in the last decades there has been a progressive increase in the UV radiation reaching the Earth's surface due to the damage in the stratospheric ozone layer. In order to protect human skin from this deleterious radiation of sunlight, the so-called UV filters have been used as active ingredients in the formulation of sunscreen cosmetic products. These active compounds are of organic or inorganic nature, and have the capacity to absorb and/or reflect, respectively, this UV radiation. Nowadays, they are not only added to those cosmetics intended specifically for sun protection but also in all type of daily products such as moisturizers, after shave products, shampoos, anti-aging creams, make-up products, etc.

It should be emphasized that some dermatological side-effects have been attributed to some compounds used as UV filters. In this sense, the compounds that can be used as UV filters in cosmetics and their maximum allowed concentrations are regulated. Specifically, the European Union (EU) 1223/2009 Regulation permits the use of 26 compounds as UV filters [1], the names of which are listed in Table 1. Among these 26 UV filters, titanium dioxide is of inorganic nature, and among the remaining 25, 7 are highly polar and can be grouped in the 'water-soluble' group, whereas the others 18 are low polar and can be grouped in the 'fat-soluble' group. Currently, all these compounds are included in the formulations of the different cosmetic products consumed in the EU framework, with the only exceptions of BCSA, PBC and 3BC which are protected by patents and are no longer used in cosmetics.

Besides, errors during the manufacturing process of cosmetics may cause a lower concentration in the final product than that formulated. This might affect the efficacy of the product since the real Sun Protection Factor could be lower than that labelled, compromising the safety of users.

Therefore, reliable and practical analytical methods are needed in order to ensure compliance with the EU Regulation and thus protect user's safety, but also to ensure product's efficacy. However, there is only a standard devoted to the determination of these compounds, i.e. 16344:2013 [2], which only covers the quantitative determination of 10 of them.

In this sense, with the aim of complementing the above mentioned standard and implementing a broad-spectrum analytical method to improve and facilitate the quality control of the cosmetic industry, this European standard presents an analytical method for the quantification of all the organic UV filters allowed and in use in the EU. The presented method, besides good analytical characteristics, is simple, low cost, rapid and both user- and environmentally-friendly. The method is based on different analytical methods previously published by the Research Group on Quality Control of Cosmetic Products of the University of Valencia [3] - [4].

Table 1 — List of the UV filters permitted in cosmetic products under the EU regulation

EU Reference number ^a	INCI name ^b	Acronym ^c	Maximum authorized concentration (% w/w)
2	Camphor benzalkonium methosulfate	CBM	6
3	Homosalate	HMS	10
4	Benzophenone-3	BZ3	10
6	Phenylbenzimidazole sulfonic acid	PBSA	8 (as acid)
7	Terephthalidene dicamphor sulfonic acid	TDSA	10 (as acid)
8	Butyl methoxydibenzoyl methane	BDMM	5
9	Benzylidene camphor sulfonic acid	BCSA	6 (as acid)

EU Reference number ^a	INCI name ^b	Acronym ^c	Maximum authorized concentration (% w/w)
10	Octocrylene	OC	10 (as acid)
11	Polyacrylamidomethyl benzylidene camphor	PBC	6
12	Ethylhexyl methoxycinnamate	EHMC	10
13	PEG-25 PABA	P25	10
14	Isoamyl p-methoxycinnamate	IMC	10
15	Ethylhexyl triazone	EHT	5
16	Drometrizole trisiloxane	DTS	15
17	Diethylhexyl butamido triazone	DEBT	10
18	4-Methylbenzylidene camphor	MBC	4
19	3-Benzylidene camphor	3BC	2
20	Ethylhexyl salicylate	EHS	5
21	Ethylhexyl dimethyl PABA	EHDP	8
22	Benzophenone-4	BZ4	5 (as acid)
23	Methylene bis-benzotriazolyl tetramethylbutylphenol	MBBT	10
24	Disodiumphenyl dibenzimidazole tetrasulfonate	PDTA	10 (as acid)
25	Bis-ethylhexyloxyphenol methoxyphenyl triazine	BEMT	10
26	Polysilicone 15	P15	10
27	Titanium dioxide	TiO ₂	25
28	Diethylamino hydroxybenzoyl hexyl benzoate	DHBB	10

^a Order number given according to the EU 1223/2009 Regulation.

^b INCI: International Nomenclature for Cosmetic Ingredients.

^c Acronyms used in this standard.

prEN 17156:2017 (E)

1 Scope

This European standard specifies an analytical method, based on liquid-chromatography (LC) with ultraviolet/visible spectrometry (UV/Vis) detection for the detection and quantitative determination of the currently 22 organic UV filters in use in the EU framework. This method has been validated for emulsion-based cosmetic products, lip-balms, lotions and waters.

2 Principles

The cosmetic sample is weighed and solved in ethanol. For difficult-to-solve samples, the use of ultrasounds or vortex can help. After that, depending on the UV filters to be determined, aliquots are taken and diluted with a mixture of ethanol:acetate buffer, ethanol or tetrahydrofuran for the determination of the water-soluble group, the fat-soluble group or P15 (which is a polymer), respectively.

Regarding the water-soluble group, the 6 UV filters are measured by employing a reversed-phase column and a mobile phase of ethanol and acetate buffer. Regarding the fat-soluble group, the 15 UV filters are determined by employing a reversed-phase column and a mobile phase of ethanol and aqueous formic acid containing hydroxypropyl-beta-cyclodextrin as mobile phase modifier. Finally, for P15 determination, a size-exclusion column and tetrahydrofuran as mobile phase are used.

3 Reagents

If not otherwise specified, analytical-grade chemicals shall be used.

- 3.1 **Absolute ethanol (EtOH), LC-grade.**
- 3.2 **Tetrahydrofuran (THF), LC-grade.**
- 3.3 **Deionized water, 18,2 MΩ/cm resistivity.**
- 3.4 **2-Hydroxypropyl-β-cyclodextrin (HP-β-CD), 1 309 g/mol molecular weight.**
- 3.5 **Formic acid, 98 %, d = 1,22 g/ml.**
- 3.6 **Glacial acetic acid, < 99 %, d = 1,05 g/ml.**
- 3.7 **Sodium hydroxide, pellets.**
- 3.8 **Sodium hydroxide, 10 % (w/w) aqueous solution.**
- 3.9 **Acetate buffer, 1 % (v/v) solution, pH = 4,75.**
- 3.10 **Formic acid, 1 % (v/v) solution, containing 20 mmol HP-β-CD.**
- 3.11 **UV filters considered, see Table 2.**

Table 2 — UV filters considered

Type	UV filter	CAS
Water-soluble UV filters	Phenyl dibenzimidazole tetrasulfonic acid (PDTA) (disodium salt)	180898-37-7
	Phenylbenzimidazole sulfonic acid (PBSA)	27503-81-7
	Terephthaloydene dicamphor sulfonic acid (TDSA) (triethanolamine salt)	90457-82-2
	Benzophenone-4 (BZ4)	4065-45-6
	Camphor benzalkonium methosulfate (CBM) (29 % aqueous solution)	52793-97-2
	PEG-25 PABA (P25)	116242-27-4
Fat-soluble UV filters	Benzophenone-3 (BZ3)	131-57-7
	Isoamyl p-methoxycinnamate (IMC)	71617-10-2
	4-methylbenzylidene camphor (MBC)	36861-47-9
	Diethylamino hydroxybenzoyl hexyl benzoate (DHBB)	302776-68-7
	Octocrylene (OC)	6197-30-4
	Ethylhexyl dimethyl PABA (EHDP)	21245-02-3
	Butyl methoxydibenzoylmethane (BMDM)	70356-09-1
	Ethylhexyl methoxycinnamate (EHMC)	5466-77-3
	Ethylhexyl salicylate (EHS)	118-60-5
	Homosalate (HMS)	118-56-9
	Diethylhexyl butamido triazone (DEBT)	154702-15-5
	Ethylhexyl triazone (EHT)	88122-99-0
	Drometrizole trisiloxane (DTS)	155633-54-8
	Methylene bis-benzotriazol tetramethylbutylphenol (MBBT)	103597-45-1
	Bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT)	187393-00-6
Polymeric UV filter	Polysilicone-15 (P15)	207574-74-1

prEN 17156:2017 (E)

3.12 UV filters stock solutions

Prepare a 500 µg/ml multicomponent stock solution of the 6 water-soluble UV filters in deionized water. For this purpose, weigh the appropriate amount of each standard (3.11) in a 25 ml volumetric flask and add approximately 10 ml of deionized water (3.3). In case any of the substances is not solubilized, add a few drops of 10 % sodium hydroxide solution (3.8) until complete dissolution. Finally, fill up to the mark with deionized water (3.3). This solution should be monthly prepared, stored at 4 °C and protected from light until use.

Prepare a 500 µg/ml multicomponent stock solution of the fat-soluble UV filters in EtOH, except for MBBT and BEMT, which are prepared at 100 µg/ml due to their limited solubility. For this purpose, weigh the appropriate amount of each standard (3.11) in a 25 ml volumetric flask and dissolve with approximately 10 ml of EtOH (3.1). Then fill up to the mark with EtOH (3.1). This solution should be monthly prepared, stored at 4 °C and protected from light until use.

Prepare a 1 000 µg/ml P15 solution in EtOH. For this purpose, weigh the appropriate amount of P15 (3.11) in a 25 ml volumetric flask and dissolve with approximately 10 ml of EtOH (3.1). Then fill up to the mark with EtOH (3.1). This solution should be monthly prepared, stored at 4 °C and protected from light until use.

3.13 Calibration standard solutions

For the preparation of the water-soluble UV filters calibration solutions, transfer 0,2 ml, 0,4 ml, 0,6 ml, 0,8 ml and 1,0 ml of the 500 µg/ml multicomponent stock solution (3.12) to five 10 ml volumetric flasks, respectively. Add 3 ml of EtOH (3.1) and acetate buffer solution (3.9) to each volumetric flask up to the mark. These 30:70 EtOH:acetate buffer (v/v) solutions contain 10 µg/ml, 20 µg/ml, 30 µg/ml, 40 µg/ml and 50 µg/ml of each target compound, respectively. These solutions should be weekly prepared, stored at 4 °C and protected from light until use.

For the preparation of the fat-soluble UV filters calibration solutions, transfer 0,2 ml, 0,4 ml, 0,6 ml, 0,8 ml and 1,0 ml of the 500 µg/ml multicomponent stock solution (3.12) and 1 ml, 2 ml, 3 ml, 4 ml and 5 ml of the 100 µg/ml solution of MBBP and BEMT to five 10 ml volumetric flasks, respectively. Add EtOH (3.1) to each volumetric flask up to the mark. These ethanolic solutions contain 10 µg/ml, 20 µg/ml, 30 µg/ml, 40 µg/ml and 50 µg/ml of each target compound, respectively. These solutions should be weekly prepared, stored at 4 °C and protected from light until use.

For the preparation of the P15 calibration solutions, transfer 0,2 ml, 0,4 ml, 0,6 ml, 0,8 ml and 1,0 ml of the 1 000 µg/ml P15 stock solution (3.12) to 10 ml volumetric flasks, respectively. Add either EtOH (3.1) or THF (3.2) to each volumetric flask up to the mark. These solutions contain 20 µg/ml, 40 µg/ml, 60 µg/ml, 80 µg/ml and 100 µg/ml of P15, respectively. These solutions should be weekly prepared, stored at 4 °C and protected from light until use.

3.14 Working standard solutions

Calibration standard solutions (3.13) are daily transferred to 1,5 ml injection vials. Once sealed, they are ready to be injected into the LC-system.

4 Apparatus and equipment

In addition to the usual laboratory equipment, the following is required.

4.1 Membrane filter, in the form of a disposable syringe filter, pore width 0,45 µm.

4.2 Analytical balance, with a precision of 0,1 mg.

4.3 Ultrasonic water bath (or vortex mixer).

4.4 pH-meter.

4.5 **LC-UV/Vis system**, equipped with pump system with gradient function, degasser, autosampler, thermostated column oven, UV/Vis detector¹⁾ and data management station.

4.6 Analytical separation column

For the determination of both water-soluble and fat-soluble group Purospher® STAR RP-18 Encapped²⁾ (125 mm length, 4 mm i.d., 5 µm particle size) or equivalent can be used.

For the determination of P15 PLgel Mixed D²⁾ (300 mm length, 7,5 mm i.d., 5 µm particle size) or equivalent can be used.

5 Procedure

5.1 Sample preparation

Homogenize the sample depending on its nature (i.e. shake creams, milks and lotions manually; cut lip balms in tiny pieces, mix and knead again). Then, in triplicate, weigh 0,02 g to 0,20 g of the sample, depending of the expected amount of UV filters, into a 25 ml volumetric flask, then dissolve and dilute with EtOH (3.1). In case of difficult-to-solve samples, an ultrasonic water bath (4.3) may be used to disperse the sample. Take different aliquots to carry out the determination of the different groups of the target compounds.

For the determination of the water-soluble UV filters, transfer 1 ml to 3 ml of the above-mentioned ethanolic sample stock solution to a 10 ml volumetric flask. Add EtOH (3.1) to complete a total volume of 2,3 ml, and then fill up to the mark with acetate buffer solution (3.9). Transfer this solution to a 1,5 ml injection vial, previously filtered through a membrane filter (4.1) if necessary.

For the determination of the fat-soluble UV filters, transfer 1 ml to 3 ml of the above-mentioned ethanolic sample stock solution to a 10 ml volumetric flask. Fill up to the mark with EtOH (3.1). Transfer this solution to a 1,5 ml injection vial previously filtered through a membrane filter (4.1) if necessary.

For the determination of P15, transfer 1 ml to 3 ml of the above-mentioned ethanolic sample stock solution to a 10 ml volumetric flask. Fill up to the mark with either EtOH (3.1) or THF (3.2), as in Calibration standard solutions (3.13). Transfer this solution to a 1,5 ml injection vial, previously filtered through a membrane filter (4.1) if necessary.

All these solutions should be prepared and protected from light until injection in the same working session.

5.2 LC-UV/Vis measurement conditions

When using the LC-UV/Vis system (4.5) and column (4.6) for water-soluble UV-filters determination, the conditions in Table 3 have shown to be suitable. When using LC systems with different delay volumes the gradient time tables should be accordingly adjusted.

1) For identification purposes, diode-array detector is recommended.

2) Purospher® STAR RP-18 Encapped and PLgel Mixed D are examples of suitable products available commercially. This information is given for the convenience of users of this International Standard and does not constitute an endorsement by CEN of these products. Equivalent products may be used if they can be shown to lead to the same results.