SLOVENSKI STANDARD SIST EN ISO 24817:2017 01-november-2017 Nadomešča: **SIST EN ISO 24817:2015** Petrokemična industrija ter industrija za predelavo nafte in zemeljskega plina -Popravila cevovodov s kompozitnimi materiali - Ocenitev in načrtovanje, montaža, preskušanje in nadzor (ISO 24817:2017, popravljena različica 2018-01-01) Petroleum, petrochemical and natural gas industries - Composite repairs for pipework - Qualification and design, installation, testing and inspection (ISO 24817:2017, Corrected version 2018-01-01) iTeh STANDARD PREVIEW Erdöl-, petrochemische und Erdgasindustrie Reparatur von Rohrleitungen mit Verbundwerkstoffen - Bewertung und Ausführung, Montage, Test und Inspektion (ISO 24817:2017, korrigierte Fassung 2018-01-01) 24817:2017 https://standards.iteh.ai/catalog/standards/sist/a656bc76-f2c9-4371-8e80-b05c65a9f40d/sist-en-iso-24817-2017 Industries du pétrole, de la pétrochimie et du gaz naturel - Réparations en matériau composite pour canalisations - Qualification et conception, installation, essai et inspection (ISO 24817:2017, Version corrigée 2018-01-01) Ta slovenski standard je istoveten z: EN ISO 24817:2017 ICS: 75.180.20 Predelovalna oprema Processing equipment SIST EN ISO 24817:2017 en,fr,de ## iTeh STANDARD PREVIEW (standards.iteh.ai) SIST EN ISO 24817:2017 https://standards.iteh.ai/catalog/standards/sist/a656bc76-f2c9-4371-8e80-b05c65a9f40d/sist-en-iso-24817-2017 ## EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM **EN ISO 24817** September 2017 ICS 75.180.20 Supersedes EN ISO 24817:2015 ## **English Version** Petroleum, petrochemical and natural gas industries - Composite repairs for pipework - Qualification and design, installation, testing and inspection (ISO 24817:2017, Corrected version 2018-01-01) Industries du pétrole, de la pétrochimie et du gaz naturel - Réparations en matériau composite pour canalisations - Conformité aux exigences de performance et conception, installation, essai et inspection (ISO 24817:2017, Version corrigée 2018-01-01) Erdöl-, petrochemische und Erdgasindustrie -Reparatur von Rohrleitungen mit Verbundwerkstoffen - Bewertung und Ausführung, Montage, Test und Inspektion (ISO 24817:2017, korrigierte Fassung 2018-01-01) This European Standard was approved by CEN on 5 September 2017. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. SIST EN ISO 24817:2017 This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels ## EN ISO 24817:2017 (E) | Contents | Page | |-------------------|------| | | | | European foreword | 3 | ## iTeh STANDARD PREVIEW (standards.iteh.ai) SIST EN ISO 24817:2017 https://standards.iteh.ai/catalog/standards/sist/a656bc76-f2c9-4371-8e80-b05c65a9f40d/sist-en-iso-24817-2017 EN ISO 24817:2017 (E) ## **European Foreword** This document (EN ISO 24817:2017) has been prepared by Technical Committee ISO/TC 67 "Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries" in collaboration with Technical Committee CEN/TC 12 "Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries" the secretariat of which is held by NEN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by March 2018 and conflicting national standards shall be withdrawn at the latest by March 2018. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights. This document supersedes EN ISO 24817:2015. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. SIST EN ISO 24817:2017 https://standards.iteh.ai/catalog/standards/sist/a656bc76-f2c9-4371-8e80-b05c6**Endorsement potice** The text of ISO 24817:2017, Corrected version 2018-01-01 has been approved by CEN as EN ISO 24817:2017 without any modification. ## iTeh STANDARD PREVIEW (standards.iteh.ai) SIST EN ISO 24817:2017 https://standards.iteh.ai/catalog/standards/sist/a656bc76-f2c9-4371-8e80-b05c65a9f40d/sist-en-iso-24817-2017 ## INTERNATIONAL STANDARD ISO 24817 Second edition 2017-08 Corrected version 2018-01 Petroleum, petrochemical and natural gas industries — Composite repairs for pipework — Qualification and design, installation, testing and inspection Industries du pétrole, de la pétrochimie et du gaz naturel — Réparations en matériau composite pour canalisations — Conformité aux exigences de performance et conception, installation, essai et inspection (18.116.11) <u>SIST EN ISO 24817:2017</u> https://standards.iteh.ai/catalog/standards/sist/a656bc76-f2c9-4371-8e80-b05c65a9f40d/sist-en-iso-24817-2017 Reference number ISO 24817:2017(E) ISO 24817:2017(E) ## iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST EN ISO 24817:2017</u> https://standards.iteh.ai/catalog/standards/sist/a656bc76-f2c9-4371-8e80-b05c65a9f40d/sist-en-iso-24817-2017 ## COPYRIGHT PROTECTED DOCUMENT #### © ISO 2017, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Co | ntent | S | Page | | | |------|---------------------|---|----------|--|--| | Fore | eword | | v | | | | Intr | oductio | n | vi | | | | 1 | Scop | e | 1 | | | | 2 | - | native references | | | | | 3 | | Terms and definitions | | | | | | | | | | | | 4 | Sym i
4.1 | ools and abbreviated terms
Symbols | | | | | | 4.1 | Abbreviated terms | | | | | 5 | | ications | | | | | | | mary of key issues | | | | | 6 | | | | | | | 7 | | ification and design | | | | | | 7.1
7.2 | Repair feasibility assessment | | | | | | 7.2 | Repair class Repair design lifetime | | | | | | 7.3
7.4 | Required data | | | | | | 7.1 | 7.4.1 Background | | | | | | | 7.4.2 Original equipment design data | | | | | | | 7.4.3 Maintenance and operational histories | 15 | | | | | | 7.4.3 Maintenance and operational histories7.4.4 Service condition data | 15 | | | | | | 7.4.5 Repair system qualification data Design methodology | 16 | | | | | 7.5 | | | | | | | | 7.5.1 Overview | 17 | | | | | | 7.5.2 Environmental compatibility 17:2017 7.5.3 https://doi.org/10.1016/journal.com/patibility/17:2017 7.5.3 https://doi.org/10.1016/journal.com/patibility/17:2017 | 19
10 | | | | | | 7.5.4 Design based on substrate load sharing (defect type A) | 19
21 | | | | | | 7.5.5 Design based on repair laminate allowable strains (defect type A) | 23 | | | | | | 7.5.6 Design based on repair-allowable stresses determined by performance | 20 | | | | | | testing (defect type A) | 24 | | | | | | 7.5.7 Design of repairs for through-wall defects (defect type B) | 25 | | | | | | 7.5.8 Axial extent of repair | | | | | | | 7.5.9 Optional design considerations | | | | | | | 7.5.10 Dent and/or gouge type defects | | | | | | | 7.5.11 Fretting type defects | | | | | | | 7.5.12 Delamination or blister type defects | | | | | | | 7.5.14 Design output | | | | | | 7.6 | Re-qualification of the repair system | | | | | | | 7.6.1 Overview | | | | | | | 7.6.2 For type A defect repairs | | | | | | | 7.6.3 For type B defect repairs | 38 | | | | 8 | Installation | | | | | | | 8.1 | | | | | | | 8.2 | Documentation prior to repair application | | | | | | | 8.2.1 Method statement | | | | | | 0.0 | 8.2.2 Work pack | | | | | | 8.3 | 1 | | | | | | 8.4
8.5 | Installation procedure | | | | | | 8.6 | Repair completion documentation Live repairs | | | | | | 8.7 | Repair of clamps, piping components, tanks, or vessels | | | | | | 8.8 | Environmental considerations | 43 | | | ## ISO 24817:2017(E) | 9 | | inspection | | |--------|----------------------|--|----| | | | ral | | | | | vable defects for the repair system | | | | | ir of defects within the repair system | | | | | ection methods | | | | | ir system maintenance and remedial options | | | | 9.5.1
9.5.2 | OverviewCondition of the repair - visual inspection | | | | 9.5.2 | | | | | 9.5.3
9.5.4 | | | | | 9.5.5 | | | | | 9.5.6 | | | | | | | | | 10 | System test | ing | 50 | | 11 | Decommiss | ioning | 51 | | Anne | A (normative | e) Design data sheet | 52 | | Anne | B (normative | e) Qualification data | 55 | | Anne | c (normative | e) Short-term pipe spool survival test | 59 | | Anne | D (normativ | e) Measurement of γ _{LCL} for through-wall defect calculation | 61 | | Anne | E (normative | e) Measurement of performance test data | 64 | | Anne | F (normative | e) Measurement of impact performance | 67 | | Anne | G (normative | e) Measurement of the degradation factor REVIEW | 68 | | Anne | H (informati | ve) Axial extent of repair look up table chai | 70 | | Anne | I (normative |) Installer qualification | 72 | | Anne | J (informativ | re) Installation requirements and guidance
https://standards.iteh.a/catalog/standards/sist/a656bc76-f2c9-4371-8e80- | 75 | | Anne | K (informati | nttps://standards.iten.a/catalog/standards/sist/a656bc/6-i2c9-43/1-8e80-
ve) Design considerations 940d/sist-an-iso-24817-2017 | 77 | | Anne | L (informati | ve) Management of the integrity of composite repair systems to | | | | pipework a | nd vessels | 82 | | Biblio | graphy | | 86 | ## Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. www.iso.org/iso/foreword.html. www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 67, *Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries,* Subcommittee SC 6, *Processing equipment and systems*: //standards.itch.ai/catalog/standards/sist/a656bc76-f2c9-4371-8e80-b05c65a9f40d/sist-en-iso-24817-2017 This second edition cancels and replaces the first edition (ISO 24817:2015), which has been technically revised. This corrected version of ISO 24817:2017 incorporates the following correction: — in 7.5.7, Formula (15), "D4" has been replaced by "D4". ISO 24817:2017(E) ## Introduction The objective of this document is to ensure that pipework, pipelines, tanks and vessels repaired using composite systems that are qualified, designed, installed and inspected using this document will meet the specified performance requirements. Repair systems are designed for use within the petroleum, petrochemical and natural gas industries, and also within utility service applications. The main users of this document will be plant and equipment owners of the pipework and vessels, design contractors, suppliers contracted to provide the repair system, certifying authorities, installation, maintenance and inspection contractors. ## iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST EN ISO 24817:2017</u> https://standards.iteh.ai/catalog/standards/sist/a656bc76-f2c9-4371-8e80-b05c65a9f40d/sist-en-iso-24817-2017 # Petroleum, petrochemical and natural gas industries — Composite repairs for pipework — Qualification and design, installation, testing and inspection ## 1 Scope This document gives requirements and recommendations for the qualification and design, installation, testing and inspection for the external application of composite repair systems to corroded or damaged pipework, pipelines, tanks and vessels used in the petroleum, petrochemical and natural gas industries. ### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 75-3, Plastics — Determination of temperature of deflection under load — Part 3: High-strength thermosetting laminates and long-fibre-reinforced plastics ISO 527-1, Plastics — Determination of tensile properties — Part 1: General principles ISO 527-4, Plastics — Determination of tensile properties 21 Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites ISO 868, Plastics and ebonite — Determination of instruction hardness by means of a durometer (Shore hardness) b05c65a9f40d/sist-en-iso-24817-2017 ISO 10952, Plastics piping systems — Glass-reinforced thermosetting plastics (GRP) pipes and fittings — Determination of the resistance to chemical attack for the inside of a section in a deflected condition ISO 11357-2, Plastics — Differential scanning calorimetry (DSC) — Part 2: Determination of glass transition temperature and glass transition step height ISO 11359-2, Plastics — Thermomechanical analysis (TMA) — Part 2: Determination of coefficient of linear thermal expansion and glass transition temperature ISO 14692, Petroleum and natural gas industries — Glass-reinforced plastics (GRP) piping ASTM C581, Standard Practice for Determining Chemical Resistance of Thermosetting Resins Used in Glass-Reinforced Structures Intended for Liquid Service ASTM D543, Standard Practices for Evaluating the Resistance of Plastics to Chemical Reagents ASTM D696, Standard Test Method for Coefficient of Linear Thermal Expansion of Plastics Between Minus 30°C and 30°C with a Vitreous Silica Dilatometer ASTM D1598, Standard Test Method for Time-to-Failure of Plastic Pipe under Constant Internal Pressure ASTM D1599, Standard Test Method for Resistance to Short-Time Hydraulic Pressure of Plastic Pipe, Tubing, and Fittings ASTM D2583, Standard Test Method for Indentation Hardness of Rigid Plastics by Means of a Barcol Impressor ASTM D2992, Standard Practice for Obtaining Hydrostatic or Pressure Design Basis for Fiberglass (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Fittings ## ISO 24817:2017(E) ASTM D3039, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials ASTM D3165, Standard Test Method for Strength Properties of Adhesives in Shear by Tension Loading of Single-Lap-Joint Laminated Assemblies ASTM D3681, Standard Test Method for Chemical Resistance of Fiberglass (Glass-Fiber-Reinforced Thermosetting Resin) Pipe in a Deflected Condition ASTM D5379, Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method ASTM D6604, Standard Practice for Glass Transition Temperatures of Hydrocarbon Resins by Differential Scanning Calorimetry ASTM E831, Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis ASTM E1640, Standard Test Method for Assignment of the Glass Transition Temperature by Dynamic Mechanical Analysis ASTM E2092, Standard Test Method for Distortion Temperature in Three-Point Bending by Thermomechanical Analysis ASTM G8, Standard Test Methods for Cathodic Disbonding of Pipeline Coatings BS 7910, Guide to methods for assessing the acceptability of flaws in metallic structures EN 59, Methods of testing plastics — Glass reinforced plastics — Measurement of hardness by means of a Barcol impressor (BS 2782-10, Method 1001, Measurement of hardness by means of a Barcol impresser) EN 1465, Adhesives — Determination of tensile lap shear strength of rigid-to-rigid bonded assemblies SIST EN ISO 24817:2017 https://standards.iteh.ai/catalog/standards/sist/a656bc76-f2c9-4371-8e80- ### 3 Terms and definitions b05c65a9f40d/sist-en-iso-24817-2017 For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - ISO Online browsing platform: available at http://www.iso.org/obp - IEC Electropedia: available at http://www.electropedia.org/ ## 3.1 ### anisotropic exhibiting different physical properties in different directions #### 3.2 #### **Barcol hardness** measure of surface hardness using a surface impresser #### 3.3 #### blister air void between layers within the laminate visible on the surface as a raised area #### 3.4 #### composite thermoset resin system that is reinforced by fibres #### 3.5 ## crack split in the laminate extending through the wall (perpendicular to the surface) such that there is actual separation with opposite surfaces visible #### 3.6 #### cure #### curing setting of a thermosetting resin system, such as polyester or epoxy, by an irreversible chemical reaction #### 3.7 #### cure schedule time-temperature profile qualified to generate a specified T_g or HDT #### 3.8 #### defect type A defect within the substrate, not through-wall and not expected to become through-wall within the repair design lifetime of the repair system #### 3.9 ### defect type B through-wall defect or a defect within the substrate where at the end of service life the remaining wall thickness is less than 1 mm #### 3.10 #### defined lifetime actual application or service lifetime of the repair #### 3.11 #### delamination area between the repair laminate and the substrate which should be bonded together but where no bond exists, or an area of separation between layers in the repair laminate #### 3.12 ### design lifetime maximum application lifetime of the repair ISO 24817:2017 https://standards.iteh.ai/catalog/standards/sist/a656bc76-f2c9-4371-8e80- standards.iteh.ai) ### **3.13** b05c65a9f40d/sist-en-iso-24817-2017 ## differential scanning calorimetry #### **DSC** method of determining the glass transition temperature of a thermosetting resin #### 3.14 #### dry spot or un-impregnated/dry fibre area of fibre not impregnated with resin, with bare, exposed fibre visible #### 3.15 #### engineered repair repair which has been designed and applied under a specified, controlled process so that under the design conditions, there is a high degree of confidence that the repair will maintain its integrity over the design lifetime #### 3.16 #### exposed fibre area of fibre not impregnated with resin that projects from the body of the repair #### 3.17 #### foreign matter any substance other than the reinforcing fibre or other materials that form part of the repair system #### 3.18 #### finishing materials final layer of material to help compact the repair laminate, typically a polymeric film or a fabric Note 1 to entry: They should be fully removed after the repair has hardened and before the repair is inspected or painted.