INTERNATIONAL STANDARD ISO 10322-1 Fourth edition 2016-03-01 ### Ophthalmic optics — Semi-finished spectacle lens blanks — Part 1: **Specifications for single-vision and multifocal lens blanks** iTeh STOptique ophtalmique Rerres de l'unettes semi-finis — Partie 1: Spécifications pour les verres unifocaux et multifocaux ISO 10322-1:2016 https://standards.iteh.ai/catalog/standards/sist/b0173235-9d32-413b-b0f5-ddf9f3e8de81/iso-10322-1-2016 ## iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 10322-1:2016 https://standards.iteh.ai/catalog/standards/sist/b0173235-9d32-413b-b0f5-ddf9f3e8de81/iso-10322-1-2016 #### COPYRIGHT PROTECTED DOCUMENT #### © ISO 2016, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Con | Contents | | | | | | | |-------|--|--|---------|--|--|--|--| | Forew | Foreword | | | | | | | | Intro | duction | 1 | v | | | | | | 1 | | | | | | | | | _ | • | • | | | | | | | 2 | | Normative references | | | | | | | 3 | Term | Terms and definitions | | | | | | | 4 | Classi | fication | 1 | | | | | | 5 | Requirements | | | | | | | | | 5.1 | General | | | | | | | | 5.2 | Optical requirements for the finished surface | 1 | | | | | | | | 5.2.1 General | | | | | | | | | 5.2.2 Tolerances on the surface power of single-vision and multifocal lens blanks | 2 | | | | | | | | 5.2.3 Uniformity of the surface power of lens blanks with nominally | 0 | | | | | | | | spherical surfaces | 2 | | | | | | | | 5.2.4 Tolerances on the intended surface cylindrical power 5.2.5 Tolerances on the surface addition power for multifocal lens blanks | Z | | | | | | | 5.3 | Geometrical tolerances | | | | | | | | 5.3 | 5.3.1 Tolerances on the size | | | | | | | | | 5.3.2 Tolerances on thickness. | | | | | | | | | 5.3.3 Segment tolerances for multifocal lens blanks | | | | | | | 6 | Toct | nethods | 1 | | | | | | O | 6.1 | General (standards.iteh.ai) | 4
1. | | | | | | | 6.2 | Determination of surface power | 4 | | | | | | | 6.3 Addition power measurement 103222-1-2016 | | | | | | | | | 0.0 | 6.3.1 https: Generalls: itch: ai/catalog/standards/sist/b0173235-9d32-413b-b0f5- | | | | | | | | | 6.3.2 Measurement 1930 8 de 81/180 1 1 1 2 1 2 1 1 2 1 1 2 | 5 | | | | | | | 6.4 | Segment dimensions and position measurement method | 5 | | | | | | | 6.5 | Inspection method for material and surface quality | 5 | | | | | | 7 | Marking and identification | | | | | | | | | 7.1 | Marking | | | | | | | | 7.2 | Identification required on the package | | | | | | | | 7.3 | Information to be made available | 6 | | | | | | 8 | Refer | Reference to this part of ISO 10322 | | | | | | | Annex | x A (inf | ormative) Material and surface quality | 8 | | | | | | | x B (inf | ormative) Conversion of surface power tolerances from the refractive index of ns blank to that of an instrument's fixed reference | | | | | | | Annex | | mative) Addition power measurement by transmission | | | | | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 172, Optics and photonics, Subcommittee SC 7, Ophthalmic optics and instruments. ISO 10322-1:2016 This fourth edition cancels and replaces the gthird redition 1 (ISO-10322-12006), which has been technically revised. dd9f8e8de81/iso-10322-1-2016 ISO 10322 consists of the following parts, under the general title *Ophthalmic optics — Semi-finished spectacle lens blanks*: - Part 1: Specifications for single-vision and multifocal lens blanks - Part 2: Specifications for progressive-power and degressive-power lens blanks ### Introduction Compared with previous editions, this part of ISO 10322 now applies to all types of semi-finished single-vision and multifocal lens blanks. ## iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 10322-1:2016 https://standards.iteh.ai/catalog/standards/sist/b0173235-9d32-413b-b0f5-ddf9f3e8de81/iso-10322-1-2016 # iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 10322-1:2016 https://standards.iteh.ai/catalog/standards/sist/b0173235-9d32-413b-b0f5-ddf9f3e8de81/iso-10322-1-2016 ### Ophthalmic optics — Semi-finished spectacle lens blanks — #### Part 1: ### Specifications for single-vision and multifocal lens blanks #### 1 Scope This part of ISO 10322 specifies requirements for the optical and geometrical properties of all semi-finished single-vision and multifocal spectacle lens blanks. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 7944, Optics and optical instruments—Reference wavelengths ISO 8598-1, Optics and optical instruments—Focimeters—Part 1: General purpose instruments (Standards.iteh.ai) ISO 13666, Ophthalmic optics — Spectacle lenses — Vocabulary ISO 10322-1:2016 3 Terms and definition's iteh.ai/catalog/standards/sist/b0173235-9d32-413b-b0f5-ddf9f3e8de81/iso-10322-1-2016 For the purposes of this document, the terms and definitions given in ISO 13666 apply. #### 4 Classification Semi-finished lens blanks (shortened to lens blanks in the remainder of this part of ISO 10322 for easier reading) are classified according to the finished surface as follows: - a) single-vision lens blanks; - b) multifocal lens blanks; - c) progressive-power and degressive-power lens blanks. #### 5 Requirements #### 5.1 General The tolerances shall apply at a temperature of 23 °C \pm 5 °C. #### 5.2 Optical requirements for the finished surface #### 5.2.1 General The optical tolerances shall apply to the manufacturer's stated values at the reference points of the lens blank at one of the reference wavelengths specified in ISO 7944. The reference point should be specified by the manufacturer. If no reference point is specified, the blank's geometric centre may be assumed to be the reference point. The optical tolerances in <u>Tables 1</u>, <u>2</u> and <u>3</u> are expressed as surface power values, in dioptres, in the refractive index of the material of the lens blank being measured. #### 5.2.2 Tolerances on the surface power of single-vision and multifocal lens blanks The tolerances on the surface power as specified in <u>Table 1</u> shall apply at the reference point and shall be measured using the method described in <u>6.2</u>. Table 1 — Tolerances on the surface power Values in dioptres (D) | Surface power | Tolerance on surface powera $\frac{F_1 + F_2}{2}$ | Tolerance on surface cylindrical powerb $\left F_1-F_2\right $ | |-------------------|---|--| | ≥0,00 and ≤2,00 | ±0,09 | 0,06 | | >2,00 and ≤10,00 | ±0,06 | 0,06 | | >10,00 and ≤15,00 | ±0,09 | 0,06 | | >15,00 and ≤20,00 | ±0,12 | 0,08 | | >20,00 | ±0,25 | 0,08 | F_1 and F_2 are the maximum and minimum values of the surface power expressed in the refractive index of the material. https://standards.iteh.ai/catalog/standards/sist/b0173235-9d32-413b-b0f5- #### 5.2.3 Uniformity of the surface power of lens blanks with nominally spherical surfaces Over a zone of 40 mm diameter centred around the reference point, the surface power shall not deviate by more than 0,06 D from the surface power measured at the reference point. The uniformity shall be determined using a suitable instrument and the method described in 6.2. #### 5.2.4 Tolerances on the intended surface cylindrical power The tolerances on the intended surface cylindrical power as specified in <u>Table 2</u> shall apply at the reference point and shall be measured using the method described in <u>6.2</u>. Table 2 — Tolerances on the intended surface cylindrical power Values in dioptres (D) | Intended cylindrical power | Tolerance | |----------------------------|-----------| | ≥0,25 and ≤4,00 | ±0,06 | | >4,00 and ≤6,00 | ±0,09 | | >6,00 | ±0,12 | #### 5.2.5 Tolerances on the surface addition power for multifocal lens blanks The tolerances on the addition power as specified in <u>Table 3</u> shall apply at the reference points and shall be measured using the method described in 6.3. These tolerances apply to those lens blanks that are intended to have either no surface cylindrical power or a surface cylindrical power <0,25 D. Relative to zero, or to any intended surface cylindrical power of the lens blank's design, where this is <0,25 D. Table 3 — Tolerances on the surface addition power Values in dioptres (D) | Surface addition power | Tolerance | |------------------------|-----------| | ≤4,00 | ±0,12 | | >4,00 | ±0,18 | #### 5.3 Geometrical tolerances #### 5.3.1 Tolerances on the size The sizes are classified as follows: - a) nominal size (d_n) : dimension(s), in millimetres, indicated by the manufacturer; - b) effective size (d_e): actual dimension(s), in millimetres; - c) usable size (d_u) : dimension(s), in millimetres, of the area that is optically usable; - 1) effective size, d_e : $$d_{\rm n}$$ – 1 mm $\leq d_{\rm e} \leq d_{\rm n}$ + 2 mm; 2) usable size, d_u : $$d_u \ge d_n$$ T mm for $d_n \le 65$ mm; ARD PREVIEW $$d_u \ge d_n - 2 \text{ mm for } d_n \le 65 \text{ mm rds.} \text{ iteh.ai})$$ The tolerance on usable size does not apply to lens blanks for lenses with a carrier curve, such as lenticulars. https://standards.iteh.ai/catalog/standards/sist/b0173235-9d32-413b-b0f5- ddf9f3e8de81/iso-10322-1-2016 #### 5.3.2 Tolerances on thickness #### 5.3.2.1 Centre thickness The centre thickness, when measured at the geometric centre (unless otherwise stated by the manufacturer), shall be neither less than the minimum thickness stated by the manufacturer nor exceed this minimum thickness by more than 3 mm. #### 5.3.2.2 Edge thickness When measured at the point stated by the manufacturer, the edge thickness shall be neither less than the minimum thickness stated by the manufacturer nor exceed this minimum thickness by more than 3 mm. #### 5.3.3 Segment tolerances for multifocal lens blanks #### 5.3.3.1 Dimensions When using one of the methods described in 6.3, each of the segment dimensions (width, depth and intermediate depth) shall not deviate from its nominal value by more than ± 0.5 mm. If sold as a matched pair, each of the segment dimensions shall not differ between the left and right lens blanks by more than 0,7 mm. #### **5.3.3.2 Position** The segment position shall be measured from the distance reference point using the measurement method described in 6.4. If no reference point is specified, the blank's geometric centre may be assumed