INTERNATIONAL STANDARD (1637

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MET MET APODHAR OPTAHUSAUUR TO CTAHDAPTUSAUUR ORGANISATION INTERNATIONALE DE NORMALISATION

Wrought copper and copper alloys — Solid products supplied in straight lengths — Mechanical properties

Cuivre et alliages de cuivre corroyés - Produits pleins livrés en longueurs droites - Caractéristiques mécaniques

First edition - 1974-11-01

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 1637:1974</u> https://standards.iteh.ai/catalog/standards/sist/6269702a-8e7f-4e11-ba35e4b57614f8a8/iso-1637-1974

UDC 669.3-42 : 539.3/.6

Ref. No. ISO 1637-1974 (E)

Descriptors : copper, copper alloys, wrought products, rods, bars, mechanical properties.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 1637 was drawn up by Technical Committee V E W ISO/TC 26, Copper and copper alloys, and circulated to the Member Bodies in December 1971.

It has been approved by the Member Bodies of the following countries:

Australia	https://standards.iteh.ai/	catalog/standards/sist/6269702a-8e7f-4e11-ba35-
Austria	India e4	lb5761418a8/iso-1637-1974 Spain
Belgium	Italy	Sweden
Canada	Japan	Switzerland
Chile	Korea, Rep. of	Thailand
Czechoslovakia	Netherlands	Turkey
Denmark	New Zealand	United Kingdom
Egypt, Arab Rep. of	Norway	U.S.A.
Finland	Portugal	U.S.S.R.
France	Romania	

The Member Body of the following country expressed disapproval of the document on technical grounds :

Germany

© International Organization for Standardization, 1974 •

Printed in Switzerland

Wrought copper and copper alloys – Solid products supplied in straight lengths – Mechanical properties

1 SCOPE AND FIELD OF APPLICATION ISO 428, Wrought copper-aluminium alloys – Chemical

This International Standard specifies the mechanical scomposition and forms of wrought products. properties of solid products, supplied in straight lengths, in ISO 429, Wrought copper-nickel alloys – Chemical wrought copper and copper alloys the chemical 637:1 composition and forms of wrought products.

compositions of which are sized dinks the appropriate dards/15024302 wrought copper-nickel-zinc alloys - Chemical International Standards (see 2.1). e4b57614f8a8/iso-1composition and forms of wrought products.

NOTES

1 In order to overcome various national interpretations of the terms "rod" and "bar", these manufactured products having a round or regular polygonal cross-section with a diameter or width across flats exceeding 5 mm or rectangular cross-section having a thickness 2 mm and over are grouped under the general heading : "solid products supplied in straight lengths". By agreement some of these materials can be supplied in coils or on reels.

2 For the mechanical properties of solid products supplied with a diameter or width across flats not exceeding 5 mm and normally supplied in coils or on reels, see ISO 1638.

2 REFERENCES

2.1 Chemical composition and forms of semimanufactured products

ISO 426, Wrought copper-zinc alloys – Chemical composition and forms of wrought products –

Part I : Non-leaded, special and high tensile alloys.

Part II : Leaded alloys.

ISO 427, Wrought copper-tin alloys. – Chemical composition and forms of wrought products.

ISO/R 1187, Special wrought copper alloys.

ISO/R 1336, Wrought alloyed coppers.

ISO/R 1337, Wrought coppers.

2.2 Designations

ISO/R 1190, Copper and copper alloys – Code of designation –

Part I : Designation of materials.

Part II : Designation of tempers.

2.3 Test methods

ISO/R 399, Vickers hardness test for copper and copper alloys (Test loads from 2.5 to 50 kgf).

ISO/R 400, Tensile testing of copper and copper alloys.

ISO/R 1555, Copper and copper alloy rolled flat products (Thickness less than 2,5 mm (0.1 in)) – Tensile test.

ISO . . ., Copper, copper alloys and alloyed copper – Selection of specimens and test pieces.¹⁾

¹⁾ In preparation.

3 ESSENTIAL PROPERTIES REQUIREMENTS

Table 1 embodies the principle that two properties are generally sufficient to define the condition of the material. The properties to be specified vary according to the temper and application of the material as set out in the table.

4 DIMENSIONAL LIMITS

Dimensional limitations which can have an effect on the properties obtained are given in table 2; products having dimensions outside these ranges may not comply with these properties.

Where the properties are not affected by dimensions or where the latter are unimportant, a dash (-) is inserted.

Where the product shape is not usually manufactured, a cross (x) is inserted and the properties listed do not apply.

5 MECHANICAL PROPERTIES

Mechanical properties are given in table 2.

6 TEST METHODS

6.1 Tensile test

6.1.1 According to ISO/R 400 for dimensions greater than or equal to 2,5 mm (0.1 in).

6.1.2 According to ISO/R 1555 for thicknesses of rectangles from 2 up to 2,5 mm.

6.2 Vickers hardness test

According to ISO/R 399.

6.3 Selection of test pieces

According to ISO . . .

iTeh STANDARD PREVIEW (stan^{TABLE 1}ds iteh ai)

Use	Temper	0,2 % proof stress R _{p0,2} <u>ISC</u>	Tensile strength 1637:198m	Elongetion A	Vickers hardness HV	
	https://star	idards.itch.ai/catalog/st e4b57614f	andards/sist/6269702a- 8a8/iso-1637-1974	8e7f-4e11 x ba35-		
General purposes	м		approx.	approx.	max.	
	0	_	-	min.	max.	
	н	-	min. — max.	approx.	approx.	
Structural purposes ¹⁾	м					
	Н	min.	approx.	min.	_	
	т	min.	approx.	min.	min.	

1) Structural purposes are defined as those purposes where the load-bearing properties of the material are the most important.

TABLE 2

Designation		Dim	ensions					
		Diameter	Rectangles		R _{p0,2}	R _m	A ¹⁾	102
	_	Width across flats	Thick ness	Width				HV
Alloy	Temper	mm	mm	mm	N/mm ²		%	
Coppers	••••	<u> </u>						
Cu-ETP	0	min. 5	2 to 25	max. 150	_	_	min. 35	max. 60
Cu-FRTP Cu-OF	НА	5 to 40	2 to 25	max. 150	-	250 to 300	approx. 15	approx, 90
Cu-DLP Cu-DHP	нв	5 to 20	2 to 10	max. 150	_	280 to 360	approx. 5	approx. 105
Alloyed coppers		<u> </u>						
Cu Ag0,05	0	min. 5	2 to 25	max. 150	-	_	min. 35	max. 60
Cu Ag0,1 Cu Ag0,05 (P)	НА	5 to 40	2 to 25	max, 150	_	250 to 300	approx, 15	approx, 90
Cu Ag0,1 (P)	НВ	5 to 20	2 to 10	max. 150	-	280 to 360	approx. 5	approx. 105
	0	min. 5	2 to 25	max. 150	-	_	min. 35	max. 60
Cu As(P)	НА	5 to 40	_2_to_25	max, 150		250 to 300	approx. 15	approx. 90
	НВ	5 to 20	2 to 10	max, 150		280 to 360	approx. 5	approx. 105
Cu Cd1	НА	18 to 30 (SU 2		N	.a ı)	350 to 430	approx. 10	approx. 110
	нв	5 to 18		871974	_	410 to 490	approx. 8	approx. 125
	TF	ttps://sta5xtor80.iteh.ai/	catalogistand	ards/sit 6269	700in-8270-4	approx 370	min. 18	min. 100
Cu Cr1	тн	5 to 25	05/0141240	DO-1037-P3	⁷⁴ min. 350	approx. 470	min. 10	min. 125
	TL	5 to 25	\succ	\succ	min. 440	approx. 500	min. 5	min. 1 3 0
Cu S(P0,01) Cu S(P0,03)	0	min. 5	2 to 25	max. 150	_	_	min. 28	max. 70
Cu Te Cu Te(P)	НА	5 to 40	2 to 25	max. 150	-	250 to 340	approx. 10	approx, 90
Copper-zinc alloys	(Brasses)		•		, ······			
07=15	0	min. 5	2 to 25	max. 60	-		min. 40	max. 85
	НА	5 to 40	2 to 25	max. 60	-	310 to 370	approx. 25	approx. 100
	0	min. 5	2 to 25	max. 60	_	_	min. 40	max. 85
Cu Zn37	НА	5 to 40	2 to 25	max. 60	-	360 to 440	approx. 35	approx. 110
	НВ	5 to 12	2 to 10	max. 60	-	430 to 510	approx. 15	approx. 140
Cu 7n40	0	min. 5	2 to 25	max. 60	-	-	min. 30	max. 95
	м	min. 5	2 to 25	max. 60		approx. 370	approx. 40	max. 120
Copper-zinc-lead a	iloys (Lea	ded brasses)						
Cu 7n2E Ph2	м	min. 5	-	-	-	approx. 360	approx. 30	max, 100
SU 21130 FU2	НА	5 to 15	\succ	\succ	_	350 to 450	approx. 20	approx. 120
	1		1		1		1	1

1) The elongation values listed are based on a gauge length $L_0 = 5,65 \sqrt{S_0}$ for dimensions greater than 2,5 mm (0.1 in) in accordance with ISO/R 400.

For thicknesses of rectangles from 2 up to 2,5 mm, the elongation values based on a fixed gauge length $L_0 = 50$ mm (see ISO/R 1555) are to be agreed between the interested parties.

Designation		Dim	ensions					
Designation		Diameter	Recta	angles	R _{p0,2}	R _m	A ¹⁾	1157
0 14-11	T	Width across flats	Thickness	Width				HV
Аноу	remper	mm	mm	mm	N/mm ²	N/mm ²	%	
Cu 7n36 Ph1	м	min. 5	_	-	-	approx. 360	approx. 30	max. 100
	НА	5 to 15	>	\ge	-	350 to 450	approx. 20	approx. 120
	М	min. 5	5 to 50	max. 150		approx, 360	approx, 30	max. 100
Cu Zn36 Pb3	НА	5 to 75	5 to 25	max. 100	-	310 to 420	approx. 20	approx. 105
	НВ	5 to 15	$\left \right\rangle$	\ge	_	410 to 490	approx. 15	approx. 125
Cu 7-29 Ph2	М	min. 5	*	—	—	approx. 360	approx. 35	max. 100
Cu 2036 PD2	НА	5 to 15	2 to 10	max. 100	-	350 to 450	approx. 20	approx. 120
	м	min. 5	_	_	-	approx. 370	approx. 35	max. 120
Cu Zn40 Pb	НА	5 to 50	\geq	\geq	_	350 to 450	approx. 25	approx. 120
	НВ	5 to 15	>>	\geq		440 to 510	approx. 15	approx. 140
Cu 7a20 Ph2	м	^{min} /5Ceh	'5 to 50	max. 150) PRF	approx. 370	approx. 25	max. 120
Cu 2n39 Pb2	НА	_	5 to 25	max. 100	tob of	390 to 510	approx. 15	approx. 130
	м	min. 5				approx. 380	approx. 24	max. 130
Cu Zn39 Pb3	НА	5 to 75	\ge	ISO 1637:19	<u>74</u> –	360 to 470	approx. 18	approx, 120
	НВ	https://standards	. ich ai eatalo	g/standards/s	ist/62 <u>6</u> 9702a	8976461540ba3	Sapprox. 12	approx. 145
Special copper-zinc	alloys (Sp	ecial brasses)	0-0370	01 1 1000/180-1	057-1774			
Cu Zn38 Sn1	м	min. 5	—	-	_	approx. 390	approx. 35	max. 120
High tensile copper	-zinc alloy	s (High tensile brasses)						
	м	min. 5	—	_	min. 180	approx. 470	min. 18	_
Cu Zn39 Al Fe Mn	НА	75 to 150	\geq	\geq	min. 200	approx. 500	min. 18	_
	НВ	5 to 75	\geq	\geq	min. 250	approx. 540	min. 18	_
	нс	5 to 38	\geq	\geq	min. 270	approx. 570	min. 12	_
Copper-tin alloys, S	Special cop	per-tin alloys (Phospho	r-bronzes, Spe	ecial tin bronz	es)			
	НА	5 to 100	2 to 25	max. 60	min. 250	approx. 380	min. 20	_
Cu Sn4	нв	5 to 50	\geq	\triangleright	min. 360	approx. 490	min. 12	-
	нс	5 to 15	\triangleright	\triangleright	min, 390	approx. 510	min. 10	_
Cu Sp6	НА	5 to 50	\geq	\geq	min. 290	approx. 450	min. 20	-
	НВ	5 to 15		\triangleright	min. 410	approx. 520	min. 10	-
Cu Sp8	НА	5 to 50	\geq		min. 340	approx. 490	min. 20	-
	нв	5 to 15	\triangleright	\triangleright	min. 470	approx. 550	min. 10	-
Cu So10	НА	15 to 50	\triangleright	\geq	min. 360	approx. 540	min. 15	-
	НВ	5 to 15	\geq	\searrow	min. 490	approx. 590	min. 10	-
Cu Sn4 Zn4	м	min. 5	_	-	_	approx. 360	approx. 50	max. 110
		•						1

†

TABLE 2 (continued)

TABLE 2 (continued)

Designation		Dimensions						
		Diameter	Rect	angles	^R p0,2	R _m	A ¹⁾	
	_	Width across flats	Thickness	Width				HV
Alloy	Temper	mm	mm	mm	N/mm ²	N/mm ²	%	
Copper-aluminium alloys, Special copper-aluminium alloys (Aluminium bronzes, Special aluminium bronzes)								
	м	min. 5	-		min. 150	approx. 440	min. 40	_
Cu Al8	НВ	5 to 50	\ge	\ge	min. 390	approx. 570	min. 20	
	нс	5 to 15	\triangleright	>	min, 440	approx. 610	min. 18	-
	м	min. 5	-	-	min. 200	approx. 510	min. 25	—
Cu Al8 Fe3	НА	5 to 50	\searrow	\ge	min, 220	approx. 540	min. 20	_
	НВ	5 to 15	\sim	\geq	min. 250	approx. 590	min. 20	_
	м	min, 10	-	_	min. 200	approx. 540	min, 20	_
Cu Allu Fes	НА	5 to 50	\triangleright	\geq	min. 250	approx. 590	min. 15	-
	м	min. 10	-	-	min. 290	approx. 690	min. 12	_
CU ATTO FES NIS	НА	5 to 50 ST		J.	min: 340	approx. 740	min. 10	_
	м	^{min. 5} (St	andar	ds.ite	min. 180	approx, 490	min. 20	-
Cu Al9 Mn2	HA	5 to 50	\geq	\geq	min. 200	approx. 510	min. 20	_
	НВ	15 to 50 https://standards.iteh.a	ISO	687-1974	min. 250	approx. 610	min. 15	_
Copper-nickel alloy	/s	<u>, nups as annon is tana</u>	e4b57614f8a	a8/iso-1637-1	974	مي نوايات (ورويات) مرايات	• ···· - · · · ·	
Cu Ni20 Mp1 Ee	0	min, 5	-	_	-		min. 40	max. 110
	нв	5 to 15	\triangleright	\geq		420 to 520	approx. 20	approx. 120
Copper-nickel-zinc	alloys							
Cu Ni18 7n20	НА	5 to 50	\triangleright	\triangleright	-	470 to 570	approx. 22	approx. 150
	нв	5 to 15	\geq	\geq	-	540 to 640	approx. 8	approx. 175
Cu Ni15 7-21	0	min. 5		\geq	-		min. 36	max, 120
	нв	5 to 15		\geq		440 to 540	approx. 18	approx, 140
C. Ni12 7-24	НА	5 to 50	\geq	\geq		440 to 540	approx. 22	approx. 150
	нв	5 to 15	\geq	\geq		540 to 640	approx. 5	approx. 185
C., N:19 7-10 Db1	НА	5 to 50	\geq	\geq	-	430 to 510	approx, 30	approx. 140
Cu Ni18 Zn19 Pb1	НВ	5 to 15			-	490 to 590	approx. 10	approx, 170
	НА	5 to 50			_	410 to 550	approx. 15	approx. 150
Cu Ni10 Zn28 Pb1	НВ	5 to 15				480 to 690	approx. 8	approx. 170
	нв		max. 100	max. 300		470 to 610	approx. 8	approx. 170
Ou Nito 7- 40 Pt 2	НА	5 to 50				460 to 560	approx. 15	approx. 150
CU INITU ZN42 Pb2	НВ	5 to 15	\geq	\geq		540 to 640	approx. 8	approx. 170
		1					1	1

Designation		Din	nensions		1			
		Diameter	Rectangles		R _{p0,2}	R _m	A ¹⁾	111/
	Width across flats	Thickness	Width				HV	
Аноу	Temper	mm	mm	mm	N/mm ²	N/mm ²	%	
Special copper allo	bys						-	
Cu Si3 Mn1	м	min. 5	_	-	min. 120	approx. 410	min. 30	_
Cu Co2 Be	TF	max. 60	-	-	min. 500	approx. 700	min. 8	min. 195
Cu Nil Si	TD	max. 30	\succ	\succ	min. 290	approx. 450	min. 9	min. 110
	ТН	max. 30	\sim	\ge	min. 540	approx. 63J	min. 12	min. 160
Cu Ni2 Si	TD	max, 30	\bigtriangledown	\ge	min. 340	approx. 450	min. 8	min. 130
CU NIZ SI	тн	max. 30	\bigtriangledown	\searrow	min. 590	approx. 670	min. 10	min. 180

TABLE 2 (concluded)

1) See page 3.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 1637:1974</u>

https://standards.iteh.ai/catalog/standards/sist/6269702a-8e7f-4e11-ba35e4b57614f8a8/iso-1637-1974

_