ETSITS 103 636-1 V1.3.1 (2021-12)

DECT-2020 New Radio (NR);
Part 1: Overview;
(https://Release 1 decided and the proview)

ETSLTS 103 636-1 V1.3.1 (2021-12)

https://standards.iteh.ai/catalog/standards/sist/6ecdebc8-77c2-47b5-94b2-09441fdbc677/etsi-ts-103-636-1-v1-3-1-2021-12

Reference RTS/DECT-00370

Keywords

5G, DECT, DECT-2020, IMT-2020, NR, OFDM radio

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from: http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommitteeSupportStaff.aspx

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or other professional standard and applicable regulations.

No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2021. All rights reserved.

Contents

Intell	ectual Property Rights	4	
Foreword			
Modal verbs terminology			
1	Scope	5	
2	References		
2.1	Normative references	5	
2.2	Informative references	5	
3	Definition of terms, symbols and abbreviations	6	
3.1	Terms		
3.2	Symbols		
3.3	Abbreviations		
4	General		
4.1	Introduction		
4.2	Overview of the parts of DECT-2020 Technical Specifications	9	
5	System and Network Architectures	9	
5.1	Wireless Point-to-Point and Point-to-Multipoint Links		
5.2	Local Area Wireless Access Networks in Cellular Network Topology		
5.3	Mesh network topology		
5.3.1	Introduction		
5.3.2	Mesh system operation		
5.3.3	Mesh Routing		
5.4	Interworking		
6	Overview on Radio technology		
6.1	Radio interface protocol architecture		
6.2	Physical Layer		
6.2.1	Physical Layer functions and capabilities		
6.2.2	Radio characteristics E181 81 1 0 1 1 6 2 6 12 21 0-		
	Medium Access Control Layer and hose 77 7 40 7 9h 45 0h 92 4 K Actol to 1 06 331 61	316	
6.3.1	Introduction		
6.3.2	MAC Structure		
6.3.3	Identities		
6.3.4	Services		
6.3.5	Functions		
6.3.6	Channel Structure		
6.4	Mobility and State Transitions		
6.4.1	Overview		
6.4.2	Intra DECT-2020 Mobility		
6.5	Data Link Control		
6.5.1	DLC Entities and Architecture		
6.5.2	Routing services.		
6.6	Convergence Layer		
6.6.1	General		
6.6.2	CVG Service types		
6.7	Co-existence		
6.7.1	General		
6.7.2	Technical Features for Supporting Co-existence		
Histo		24	
TITISTO	T V	7.4	

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECTTM, **PLUGTESTS**TM, **UMTS**TM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP**TM and **LTE**TM are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M**TM logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. **GSM**[®] and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Digital Enhanced Cordless Telecommunications (DECT).

The present document is part 1 of a multi-part deliverable covering the DECT-2020 New Radio (NR) technology, as identified below: alog/standards/sist/6ecdebo8-77c2-47b5-94b2-09441 fdbc677/ets-1s-103-636-1-v1-3-1-2021

Part 1: "Overview";

Part 2: "Radio reception and transmission requirements";

Part 3: "Physical layer";

Part 4: "MAC layer";

Part 5: "DLC and Convergence layers".

DECT-2020 NR is recognized in Recommendation ITU-R M.2150 [i.2] as a component RIT fulfilling the IMT-2020 requirements of the IMT-2020 use scenarios Ultra-Reliable Low Latency Communication (URLLC) and massive Machine Type Communication (mMTC). The Set of Radio Interface Technology (SRIT) called "DECT 5G SRIT" is involving 3GPP NR and DECT-2020 NR.

The present document introduces the system overview covering mMTC and URLLC features.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

[&]quot;must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

1 Scope

The present document provides an overview on DECT-2020 NR including layers, system and network architectures envisioned for this release. Further it provides an overview to ETSI TS 103 636-2 [1], ETSI TS 103 636-3 [2], ETSI TS 103 636-4 [3], ETSI TS 103 636-5 [4] and their interrelation.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are necessary for the application of the present document.

[1]	ETSI TS 103 636-2: "DECT-2020 New Radio (NR); Part 2: Radio reception and transmission requirements; Release 1".
[2]	ETSI TS 103 636-3: "DECT-2020 New Radio (NR); Part 3: Physical layer; Release 1".
[3]	ETSI TS 103 636-4: "DECT-2020 New Radio (NR); Part 4: MAC layer; Release 1".
[4]	ETSI TS 103 636-5: "DECT-2020 New Radio (NR); Part 5: DLC and Convergence layers; Release 1".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1]	ETSI TS 123 501: "5G; System architecture for the 5G System (5GS) (3GPP TS 23.501
	Release 16)".

[i.2] Recommendation ITU-R M.2150: "Detailed specifications of the terrestrial radio interfaces of International Mobile Telecommunications-2020 (IMT-2020)".

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:

Fixed Termination point (FT): operational mode of RD where RD initiates coordinates local radio resources, provides information how other RDs may connect and communicate with it

operating channel: single continuous part of radio spectrum with a defined bandwidth where RDs transmits and/or receives

Portable Termination point (PT): operational mode of RD where RD selects another RD, which is in FT mode, for association

Radio Device (RD): device with radio transmission and reception capability, which can operate in FT and/or PT mode

resource: variable length time unit defined in subslot(s) or slot(s) in single operating channel that RD is using for transmission or reception of physical layer packet

NOTE: Resource can be contentious or contention free, i.e. scheduled.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

RDFT RD operating in FT mode

RD_{FT,PT} RD operating in both FT and PT mode

RD_{PT} RD operating in PT mode

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ARQ Automatic Repeat reQuest BCC Broadcast Control BCCH Broadcast Control Channel

BLER Block Error Ratio

BPSK Binary Phase Shift Keying
BSC Beacon Scanning Control
CCC Connection Configuration Control
CCCH Common Control CHannel

CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing

CRC Cyclic Redundancy Check
CVG Convergence (layer)
DCCH Dedicated Control CHannel
DCH Dedicated Channel

DECT Digital Enhanced Cordless Telecommunications

DL Downlink

DLC Data Link Control (layer)
DLC-A DLC Service type 2: DLC ARQ

DLC-S DLC Service type 1: Segmentation mode
DLC-T DLC Service type 0: Transparent mode

DTCH Dedicated Traffic Channel

EP EndPoint

FDMA Frequency Division Multiple Access

FEC Forward Error Correction FFT Fast Fourier Transform

FP Fixed Part

Fixed Termination point FT

GI Guard Interval

HARQ Hybrid Automatic Repeat Request

ID **IDentity**

Information Element ΙE

IMT International Mobile Telecommunications

IoT Internet of Things

ITU-R International Telecommunication Union-Radiocommunication sector

LBT Listen Before Talk LRC Local Radio Control Least Significant Bit LSB MAC Medium Access Control Modulation and Coding Scheme MCS Multiple Input Multiple Output MIMO

massive Machine Type Communication mMTC

Most Significant Bit MSB

Multicast (Broadcast) Traffic Channel **MTCH** N3IWF Non-3GPP Inter-Working-Function

New Radio NR

PHY

OFDM Orthogonal Frequency Division Multiplexing

Physical Control Channel **PCC PCCH** Paging Control Channel PCH/BCH Paging and Broadcast Channel **PDC** Physical Data Channel Protocol Data Unit PDU

Physical Layer **PLMN** Public Land Mobile Network

PT Portable Termination point **PTC Paging Transmission Control**

Quadrature Amplitude Modulation OAM

Quadrature Phase Shift Keying **QPSK**

Random Access Control RAC

Random Access CHannel **RACH**

Radio Device RD RF Radio Frequency

Radio Interface Technology **RIT** RSSI Received Signal Strength Indicator

RXReceiver

RX-TX Receive-Transmit **SRIT** Set of RITs

Time Division Duplex **TDD**

TDMA Time Division Multiple Access **TNGF** Trusted Non-3GPP Gateway Function

TXTransmitter User Equipment UE UL Uplink

ULE Ultra Low Energy

Ultra-Reliable Low Latency Communication **URLLC**

WAN Wide Area Networks

4 General

4.1 Introduction

DECT-2020 NR is a Radio Interface Technology (RIT) designed to provide a slim but powerful technology foundation for wireless applications deployed in various use cases and markets. This radio interface technology supports all kind of applications including, but not limited to Cordless Telephony, Audio Streaming Applications, Professional Audio Applications, consumer and industrial applications of Internet of Things (IoT) such as industry and building automation and monitoring, utility and smart city applications, and in general solutions for local area deployments (indoor or outdoor) for Ultra-Reliable Low Latency Communication (URLLC) and massive Machine Type Communication (mMTC) as envisioned by ITU-R for IMT-2020.

DECT-2020 NR is recognized in Recommendation ITU-R M.2150 [i.2] as a component RIT fulfilling the IMT-2020 requirements of the IMT-2020 use scenarios URLLC and mMTC. The Set of Radio Interface Technology (SRIT) called "DECT 5G SRIT" is involving 3GPP NR and DECT-2020 NR.

In general, DECT-2020 NR as a technology foundation is targeted for local area wireless applications, which can be deployed anywhere by anyone at any time. The technology supports autonomous and automatic operation with minimal maintenance effort. Where applicable, interworking functions to Wide Area Networks (WAN). e.g. PLMN, satellite, fibre, and internet protocols foster the vision of a network of networks.

DECT-2020 NR can be used as a foundation for:

- very reliable Point-to-Point and Point-to-Multipoint Wireless Links provisioning (e.g. cable replacement solutions);
- local area Wireless Access Networks following a star topology as in classical DECT deployment supporting URLLC use cases; and
- self-organizing Local Area Wireless Access Networks following a mesh network topology, which enables to support mMTC use cases.

DECT-2020 NR applies similar design principles as in legacy DECT and DECT ULE. Especially the inherent feature of automatic interference management allows deployments without extensive frequency planning. The Mesh networking capability of DECT-2020 NR enables application-driven network topologies and deployments in e.g. IoT and mMTC use scenarios such that the link budget of classical cellular base-station to user equipment constellations is no longer a limiting factor.

The DECT-2020 NR physical layer is in principle suited for addressing frequency bands below 6 GHz. The physical layer employs Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) combined with Time Division Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA) in a Time Division Duplex (TDD) communication manner. The physical layer employs multiple numerologies, with different subcarrier spacings and corresponding Cyclic Prefix lengths and FFT sizes, allowing operation with different channel bandwidths, and optimize operations in different frequency bands and propagation environments. The physical layer supports advanced channel coding (Turbo coding) for both control and physical channels and Hybrid ARQ with incremental redundancy, which enables fast re-transmission. Advanced channel coding together with Hybrid ARQ ensures very reliable communication.

Additionally, the physical layer supports, fast link adaptation, transmit and receiver diversity, as well as MIMO operations up to 8 streams.

DECT-2020 NR (i.e. PHY layer numerology and MAC algorithms) is designed to enable coexistence with legacy DECT and DECT evolution in current frequency bands allocated to DECT.

4.2 Overview of the parts of DECT-2020 Technical Specifications

Release 1 of the DECT-2020 NR technical specifications defines the Radio Interface Technology (RIT) by the following parts:

- ETSI TS 103 636-1 (the present document): "DECT-2020 New Radio (NR); Part 1: Overview".
- ETSI TS 103 636-2: "DECT-2020 New Radio (NR); Part 2: Radio Reception and Transmission requirements" [1].
- ETSI TS 103 636-3: "DECT-2020 New Radio (NR); Part 3: Physical layer" [2].
- ETSI TS 103 636-4: "DECT-2020 New Radio (NR); Part 4: Medium Access Control layer" [3].
- ETSI TS 103 636-5: "DECT-2020 New Radio (NR); Part 5: DLC and Convergence layers" [4].

ETSI TS 103 636 series will be accompanied by a feature and/or application-driven technical specification set, which is organized as a multi-part deliverable, delivering profiles and application specific solutions for various industries.

ETSI TS 103 636-1 is the present document.

ETSI TS 103 636-2 [1] establishes the minimum RF requirements for DECT-2020 New Radio (NR) Radio Devices (RDs). These requirements cover both Fixed Termination point (FT) as well as Portable Termination point (PT). That document also provides a list of supported frequency bands.

ETSI TS 103 636-3 [2] specifies the physical layer (PHY) and interaction between PHY and MAC layer.

ETSI TS 103 636-4 [3] specifies MAC layer and interaction between MAC layer and physical layer and higher layers.

ETSI TS 103 636-5 [4] specifies the Data Link Control (DLC) and Convergence layers.

5 System and Network Architectures

5.1 Wireless Point-to-Point and Point-to-Multipoint Links

Wireless Point-to-Point links involve two radio devices communicating with each other. A typical application is the cable replacement by a wireless link established between two radio devices requiring communicating with each other.

Compared to wireline systems, wireless comes with the benefit that point to multipoint communication is an inherent feature of radio propagation, so that the support of broadcast and multicast messages from one point to multiple points is just a matter of protocol.

The radio connection between two or more radio devices is enabled by one RD selecting to operate in FT mode (RD_{FT}) and initiate radio resource coordination and beacon transmissions. Other RD(s) perform association procedure in PT mode (RD_{PT}) with the RD_{FT} .

5.2 Local Area Wireless Access Networks in Cellular Network Topology

A single-cell network topology involves in principle two types of Radio Devices (RDs): an RD operates in FT mode (RD $_{FT}$) as a base station, which is a component of the fixed network infrastructure, other RDs operate PT mode (RD $_{PT}$).

RD_{FT} is coordinating radio resources, and serves a communication cell by being the central communication point for RD_{PT}, which can be portable device.

A multi-cell topology is a deployment of multiple RD_{FT} as base stations in a fixed network infrastructure, where each base station is serving its own dedicated cell area and RD_{PT} can move from one cell area to the other.

5.3 Mesh network topology

5.3.1 Introduction

In DECT-2020 mesh network devices can communicate directly to each other extending the range of network and increasing the reliability of communication. The mode of the involved radio devices may change autonomously depending the context of the communication. Each radio device can act as a node transmitting a message, as a node forwarding any message from another radio device or as a node being the destination of a message. Each radio device can communicate directly (device to device) or, if not in range, indirectly - via other radio devices establishing a communication route - with each other which minimizes the probability of outage.

Mesh topology can support high device densities and the autonomous routing provides the ability to adapt dynamically mobile users and interference.

Mesh operation supports autonomous routing. In order to achieve efficient mMTC operation the mesh system is scalable to a very high number of devices in a network, the routing is based on cost value, without the need to maintain routing tables in each device.

The key requirements of how the scalability can be achieved are:

- All radio devices can route data. Whether RD is routing data is based on an autonomous decision of the RD. In addition, an RD may be configured to operate in PT mode only, e.g. due to low battery resources.
- Radio devices take local decisions of the radio resources, e.g. how radio devices use Hybrid ARQ, select modulation and coding and so forth in each radio link.
- Radio devices may change their operating mode between FT mode (RD_{FT}), PT mode (RD_{PT}), or both FT and PT modes (RD_{FT,PT}), autonomously based on local decisions.
- No central coordinator(s), enabling the massive scale of the network.
- Radio device operating in RD_{FT} or RD_{FT, PT} mode coordinates local radio resources.
- Support of multiple backend connected Radio devices that operate in FT mode (RD_{FT}).
- RDs can operate with multiple radio channels. 36-1 VI 3.1 (2021-12)

5.3.2 Mesh system operation

The mesh system operation is based on a clustered tree topology where each RD decides the next hop individually based available routes towards the RD providing the connection to the external internet in FT mode (RD_{FT}). Each radio device has knowledge of the next uplink and downlink hop in the clustered tree and RD_{FT} , or $RD_{FT,PT}$ mode in each cluster controls radio resources and transmissions independently.

The formation of clustered tree topology has following steps:

- An RD which has internet connectivity, RD_{FT}, in FT mode i.e. Sink selects operating frequency (or frequencies) and initiates a beacon transmission indicating that it has a route to the external world. This enables other RDs to detect it and associate with it. Beacons indicate all necessary parameters how to perform association, such as frame timing and how radio resources are used and the set of routing parameters. This association procedure does not differentiate from the association process in other system architectures described in clauses 5.1 and 5.2.
- RD detecting a beacon from another RD evaluates the connection based on the information included in the
 received beacon. Based on the information and signal quality the RD does an independent decision to which
 RD_{FT} or RD_{FT,PT} to associate. RD monitors its neighbourhood and may autonomously initiate an association
 process towards another RD based on routing cost.
- Process continues to next hops and so on and it is illustrated in Figure 5.3.2-1.