INTERNATIONAL STANDARD

First edition 2015-07-01

Image technology colour management — Black point compensation

Gestion de couleur en technologie d'image — Compensation du point noir

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 18619:2015</u> https://standards.iteh.ai/catalog/standards/sist/08411c0b-2364-4872-9d92-8a2cf96c5cb4/iso-18619-2015

Reference number ISO 18619:2015(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 18619:2015</u> https://standards.iteh.ai/catalog/standards/sist/08411c0b-2364-4872-9d92-8a2cf96c5cb4/iso-18619-2015

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Forew	vord			iv
Introduction				v
1	Scope			1
2	Norm	ative ref	ferences	1
3	Term	s and de	finitions	1
4	Requirements			2
	4.1	Constra	aints	2
	4.2	Computation		
		4.2.1	Outline	3
		4.2.2	Functions used	
		4.2.3	Functions used Computing the SourceBlackPoint	4
		4.2.4	Computing the DestinationBlackPoint for ICC profiles that are not LUT-based	
		4.2.5	Computing the DestinationBlackPoint for ICC profiles that are LUT-based	5
		4.2.6	Computing the mapping from SourceBlackPoint to DestinationBlackPoint	
		4.2.7	Applying the black point compensation in a colour conversion	11
Annez	Annex A (informative) Why black point compensation is neccessary			
Biblio	Bibliography			

iTeh STANDARD PREVIEW (standards.iteh.ai)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 130, *Graphic technology*, in cooperation with the International Color Consortium.

Introduction

Black point compensation (BPC) is a technique used to address colour conversion problems caused by differences between the darkest level of black achievable on one device and the darkest level of black achievable on another. This procedure was first implemented in Adobe Photoshop in the late 1990s. The International Color Consortium (ICC) and ISO Technical Committee 130 (Graphic technology) have created this document to allow black point compensation to be used in a consistent manner across applications.

The purpose of BPC is to adjust a colour transform between the colour spaces of source and destination ICC profiles, so that it retains shadow details and utilizes available black levels. The procedure depends only on the rendering intent(s) and the source and destination ICC profiles, not on any points in a particular image. Therefore, the colour transform using specific source and destination ICC profiles and rendering intent can be computed once, and then efficiently applied to many images which use the same ICC profile colour transform pair and rendering intent.

iTeh STANDARD PREVIEW (standards.iteh.ai)

iTeh STANDARD PREVIEW (standards.iteh.ai)

Image technology colour management — Black point compensation

1 Scope

This International Standard specifies a procedure, including computation, by which a transform between ICC profiles can be adjusted (compensated) to take into account differences between the dark end of the source colour space and the dark end of the destination colour space. This is referred to as black point compensation (BPC). The relative colorimetric encoding of ICC profile transforms already provides a mechanism for such adjustment of the light (white) end of the tone scale.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 15076-1, Image technology colour management — Architecture, profile format and data structure — Part 1: Based on ICC.1:2010

iTeh STANDARD PREVIEW ICC.1:2001-04, File Format for Color Profiles (standards.iteh.ai)

3 Terms and definitions

<u>ISO 18619:2015</u>

For the purposes of this document, the terms and definitions given in TSO 15076-1 and the following apply. 9d92-8a2cf96c5cb4/iso-18619-2015

3.1

DestinationBlackPoint

coordinate representing a dark neutral reproducible colour in the destination colour gamut

3.2

DestinationProfile

ICC profile, containing the transform from profile connection space to the destination device colour space

3.3

SourceBlackPoint

coordinate representing a dark neutral colour in the source colour gamut

3.4

SourceProfile

ICC profile, containing the transform from the source device colour space to the profile connection space

3.5

RenderingIntent

rendering intent of the conversion from a source ICC profile's colour space to a destination ICC profile's colour space

3.6

LabIdentityProfile

real or virtual ICC profile that contains a bi-directional (identity) transform between CIELAB and PCSLAB

3.7

black point compensation

BPC

computational procedure by which a transform between the colour spaces of ICC profiles can be adjusted (compensated) to take into account differences between the dark end of the source colour space and the dark end of the destination colour space

3.8

L, a, b

L*, a*, or b* component of the CIELAB colour space

3.9

output-capable CMYK profile

CMYK profile containing a transform from the ICC PCS encoding to the colour space encoding

3.10

transform

mathematical operations that define the change in representation of a colour between two colour spaces

3.11

gamut

range of colours that a given system is capable of reproducing

4 Requirements

iTeh STANDARD PREVIEW

4.1 Constraints

(standards.iteh.ai)

The black point compensation procedure defined in this International Specification shall take as its inputs a destination ICC profile, a source ICC profile, and a rendering intent (in this International Standard called *DestinationProfile*, *SourceProfile*, and *RenderingIntent*, respectively).

Applications that apply black point compensation shall support ICC profiles that conform to ISO 15076-1 and ICC profiles that conform to ICC.1:2001-04.

NOTE 1 This requirement ensures that processing applications will properly process all Version 2 and Version 4 ICC profiles.

NOTE 2 ISO 15076-1 provides a description of source and destination ICC profiles.

The rendering intent shall be one of: RelativeColorimetric; Perceptual; or Saturation. The rendering intent used with *DestinationProfile* shall be the same as the rendering intent used with *SourceProfile*. Black point compensation is not appropriate for the AbsoluteColorimetric rendering intent.

The versions of *SourceProfile* and *DestinationProfile* do not need to match.

SourceProfile and *DestinationProfile* types shall be Input, Display, Output, or ColorSpace. The types of *SourceProfile* and *DestinationProfile* do not need to match.

DestinationProfile shall contain a transform from the ICC PCS encoding to the colour space encoding.

The data colour spaces of the *SourceProfile* and *DestinationProfile* shall be Gray, RGB, CMYK or CIELAB. The data colour spaces of *SourceProfile* and *DestinationProfile* do not need to match.

NOTE 3 Some implementations of BPC extend to additional colour spaces or mixed rendering intents. The way in which BPC operates in these cases is outside the scope of this International Standard.

4.2 Computation

4.2.1 Outline

Black point compensation shall be performed according to the following procedure:

- a) the *SourceBlackPoint* of *SourceProfile* shall be calculated as specified in <u>4.2.3</u>;
- b) the *DestinationBlackPoint* of *DestinationProfile* shall be calculated as specified in <u>4.2.4</u> and <u>4.2.5</u>;
- c) a mapping from *SourceBlackPoint* to *DestinationBlackPoint* shall be calculated as specified in <u>4.2.6;</u>
- d) the mapping shall be applied in a colour conversion as specified in <u>4.2.7</u>.

4.2.2 Functions used

4.2.2.1 Colour transform with profiles

T shall denote a function to transform a point in the data colour space of *Profile1* to a point in the device colour space of *Profile2*, using a rendering intent, such that

 $y = \mathbf{T} (x, Profile1, Profile2, Intent)$

where

 x is a point in the data colour space of *Profile1*;
y is a point in the data colour space of *Profile2*;
Intent is the rendering intent. ISO 18619:2015 https://standards.iteh.ai/catalog/standards/sist/08411c0b-2364-4872-

4.2.2.2 Darkest colour of a profile 8a2ct96c5cb4/iso-18619-2015

D shall denote a function to provide the darkest colour coordinate in the data colour space of *Profile* for a rendering intent, such that

$$dc = \mathbf{D}$$
 (Profile, Intent)

where

dc is the darkest colour

Profile is the profile being evaluated,

Intent is the rendering intent.

dc shall be determined as follows:

A subset of the vertices within the data colour space of *Profile*, V, shall be defined as follows.

If the data colour space of *Profile* is Gray

V shall be the set of $\{(0) (1)\}$.

If the data colour space of *Profile* is RGB

```
V shall be the set of {(0, 0, 0) (1, 1, 1)}.
```

If the data colour space of *Profile* is CMYK

V shall be the set of {(0, 0, 0, 0) (1, 1, 1, 1) (0, 0, 0, 1) (1, 1, 1, 0)}.

(2)

(1)

The darkest colour, dc, shall be the lowest value of L* resulting from applying each element v of the appropriate V through the following transform:

T (v, Profile, LabIdentityProfile, Intent).

NOTE 1 *dc* is intended to be the value of black or darkest colour in the colour space of *Profile*.

NOTE 2 Determining the darkest colour in this way works for profiles with both the normal polarity and inverse polarity.

4.2.3 Computing the SourceBlackPoint

The *SourceBlackPoint* is computed by first defining *LocalBlack* of *SourceProfile* and then using this to compute the *SourceBlackPoint*.

A *LocalBlack* value for the source colour space shall be defined as follows:

If SourceProfile is an output-capable CMYK ICC profile

LocalBlack shall be set to **T** ((0, 0, 0), LabIdentityProfile, *SourceProfile*, Perceptual)

If SourceProfile is not an output-capable CMYK ICC profile

If the data colour space of *SourceProfile* is CIELAB,

LocalBlack shall be set to (0, 0, 0).

If the data colour space of *SourceProfile* is Gray, RGB, or CMYK,

LocalBlack shall be set to D (SourceProfile, RenderingIntent).

The SourceBlackPoint is then calculated as follows 0 18619:2015

Li shall be set to the L* component of T (LocalBlack, SourceProfile, LabIdentityProfile, RenderingIntent).

If *Li* is greater than 50,

SourceBlackPoint shall be set to (50, 0, 0),

else

SourceBlackPoint shall be set to (*Li*, 0, 0).

4.2.4 Computing the DestinationBlackPoint for ICC profiles that are not LUT-based

If *DestinationProfile* is not LUT-based, then its *DestinationBlackPoint* shall be determined as follows:

A *LocalBlack* value for the DestinationProfile data destination colour space shall be determined as follows:

LocalBlack shall be set to D (DestinationProfile, RenderingIntent).

NOTE Only Gray and RGB are valid data colour spaces for a DestinationProfile that is not LUT-based.

The DestinationBlackPoint is then calculated as follows

Li shall be set to the L component of T (*LocalBlack*, *DestinationProfile*, *LabIdentityProfile*, *RenderingIntent*).

If *Li* is greater than 50,

DestinationBlackPoint shall be set to (50, 0, 0),

else

DestinationBlackPoint shall be set to (Li, 0, 0).

4.2.5 Computing the DestinationBlackPoint for ICC profiles that are LUT-based

4.2.5.1 Overview

If *DestinationProfile* is LUT-based, then its *DestinationBlackPoint* shall be determined as follows:

InitialLab, inRamp, and *outRamp* shall be calculated as specified in <u>4.2.5.2</u>.

If *outRamp* is not valid as specified in <u>4.2.5.3</u>,

DestinationBlackPoint shall be set to (0, 0, 0),

else if *RenderingIntent* is RelativeColorimetric, and the *outRamp* meets the mid range straight test specified in <u>4.2.5.4</u>,

DestinationBlackPoint shall be set to InitialLab,

else

iTeh STANDARD PREVIEW DestinationBlackPoint shall be determined as specified in <u>4.2.5.5</u>. (standards.iteh.ai)