This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

INTERNATIONAL

Designation: B381-08 Designation: B 381 - 08a

Standard Specification for Titanium and Titanium Alloy Forgings¹

This standard is issued under the fixed designation B 381; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This specification² covers 39 grades of annealed titanium and titanium alloy forgings as follows:
- 1.1.1 Grade F-1—Unalloyed titanium,
- 1.1.2 Grade F-2—Unalloyed titanium,
- 1.1.2.1 Grade F-2H-Unalloyed titanium (Grade 2 with 58 ksi minimum UTS),
- 1.1.3 Grade F-3-Unalloyed titanium,
- 1.1.4 Grade F-4-Unalloyed titanium,
- 1.1.5 Grade F-5-Titanium alloy (6 % aluminum, 4 % vanadium),
- 1.1.6 Grade F-6-Titanium alloy (5 % aluminum, 2.5 % tin),
- 1.1.7 Grade F-7—Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.7.1 Grade F-7H—Unalloyed titanium plus 0.12 to 0.25 % palladium (Grade 7 with 58 ksi minimum UTS),
- 1.1.8 Grade F-9—Titanium alloy (3 % aluminum, 2.5 % vanadium),
- 1.1.9 Grade F-11-Unalloyed titanium plus 0.12 to 0.25 % palladium,
- 1.1.10 Grade F-12-Titanium alloy (0.3 % molybdenum, 0.8 % nickel),
- 1.1.11 Grade F-13—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.12 Grade F-14—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.13 Grade F-15—Titanium alloy (0.5 % nickel, 0.05 % ruthenium),
- 1.1.14 Grade F-16—Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.14.1 Grade F-16H—Unalloyed titanium plus 0.04 to 0.08 % palladium (Grade 16 with 58 ksi minimum UTS),
- 1.1.15 Grade F-17—Unalloyed titanium plus 0.04 to 0.08 % palladium,
- 1.1.16 Grade F-18—Titanium alloy (3 % aluminum, 2.5 % vanadium) plus 0.04 % to 0.08 % palladium,
- 1.1.17 Grade F-19-Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chromium, 4 % zirconium, 4 % molybdenum),
- 1.1.18 *Grade F-20*—Titanium alloy (3 % aluminum, 8 % vanadium, 6 % chromium, 4 % zirconium, 4 % molybdenum) plus 0.04 to 0.08 % palladium,
- 1.1.19 Grade F-21—Titanium alloy (3 % aluminum, 2.7 % niobium, 15 % molybdenum, 0.25 % silicon),
- 1.1.20 Grade F-23—Titanium alloy (6 % aluminum, 4 % vanadium, extra low interstitials, ELI),
- 1.1.21 Grade F-24-Titanium alloy (6 % aluminum, 4 % vanadium) plus 0.04 to 0.08 % palladium,
- 1.1.22 Grade F-25—Titanium alloy (6 % aluminum, 4 % vanadium) plus 0.3 to 0.8 % nickel and 0.04 to 0.08 % palladium,
- 1.1.23 Grade F-26—Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
- 1.1.23.1 Grade F-26H—Unalloyed titanium plus 0.08 to 0.14 % ruthenium (Grade 26 with 58 ksi minimum UTS),
- 1.1.24 Grade F-27—Unalloyed titanium plus 0.08 to 0.14 % ruthenium,
- 1.1.25 Grade F-28—Titanium alloy (3 % aluminum, 2.5 % vanadium plus 0.08 to 0.14 % ruthenium),
- 1.1.26 Grade F-29-Titanium alloy (6 % aluminum, 4 % vanadium, extra low interstitial, ELI plus 0.08 to 0.14 % ruthenium),
- 1.1.27 Grade F-30—Titanium alloy (0.3 % cobalt, 0.05 % palladium),
- 1.1.28 Grade F-31—Titanium alloy (0.3 % cobalt, 0.05 % palladium),
- 1.1.29 Grade F-32-Titanium alloy (5 % aluminum, 1 % vanadium, 1 % tin, 1 % zirconium, 0.8 % molybdenum),
- 1.1.30 Grade F-33—Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium),
- 1.1.31 Grade F-34—Titanium alloy (0.4 % nickel, 0.015 % palladium, 0.025 % ruthenium, 0.15 % chromium),
- 1.1.32 Grade F-35-Titanium alloy (4.5 % aluminum, 2 % molybdenum, 1.6 % vanadium, 0.5 % iron, 0.3 % silicon),
- 1.1.33 Grade F-36-Titanium alloy (45 % niobium),

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This specification is under the jurisdiction of ASTM Committee B10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.01 on Titanium.

Current edition approved May 15; Aug. 1, 2008. Published June August 2008. Originally approved in 1961. Last previous edition approved in $\frac{20062008}{2008}$ as $\frac{B381-06a}{2008}$.

² For ASME Boiler and Pressure Vessel Code applications, see related Specification SB-381 in Section II of that Code.

1.1.34 Grade F-37-Titanium alloy (1.5 % aluminum), and

1.1.35 Grade F-38—Titanium alloy (4 % aluminum, 2.5 % vanadium, 1.5 % iron).

Note 1—H grade material is identical to the corresponding numeric grade (that is, Grade 2H = Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade. Grades 2H, 7H, 16H, and 26H are intended primarily for pressure vessel use.

The H grades were added in response to a user association request based on its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports, where over 99 % met the 58 ksi minimum UTS.

1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

2. Referenced Documents

2.1 ASTM Standards:³

B 348Guide for Carbon BlackValidation of Test Method Precision and Bias_Specification for Titanium and Titanium Alloy Bars and Billets

E 8Guide for Carbon BlackValidation of Test Method Precision and Bias_Test Methods for Tension Testing of Metallic Materials

E 29Guide for Carbon BlackValidation of Test Method Precision and Bias

Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E 539 Test Method for X-Ray Fluorescence Spectrometric Analysis of 6Al-4V Titanium Alloy

<u>E 1409</u> Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Technique

<u>E 1447</u> Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Thermal Conductivity/Infrared Detection Method

E 1941 Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys

E 2371 Test Method for Analysis of Titanium and Titanium Alloys by Atomic Emission Plasma Spectrometry

E120Guide for Carbon BlackValidation of Test Method Precision and Bias

E1409Guide for Carbon BlackValidation of Test Method Precision and Bias

E1447Guide for Carbon BlackValidation of Test Method Precision and Bias 2626 Guide for Spectrometric Analysis of Reactive and Refractory Metals

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

3.1.1 *bar*, n—a hot rolled, forged or cold worked semifinished solid section product whose cross sectional area is less than 16 in.²(10 323 mm²).

3.1.2 *billet*, n—a solid semifinished section, hot rolled or forged from an ingot, with a cross sectional area greater than 16 in.²(10 323 mm²).

3.1.3 *forging*, *n*—any product of work on metal formed to a desired shape by impact or pressure in hammers, forging machines, upsetters presses or related forming equipment.

4. Ordering Information

4.1 Orders for forgings under this specification shall include the following information, as applicable:

- 4.1.1 Grade number (Section 1),
- 4.1.2 Tensile properties (Table 1),
- 4.1.3 Dimensions and tolerances (Section 910),
- 4.1.4 Sampling, mechanical properties (Section 78),
- 4.1.5 Methods for chemical analysis (Section 6),
- 4.1.6Marking (Section 16
- 4.1.6 Marking (Section 17),
- 4.1.7Packaging (Section
- 4.1.7 Packaging (Section 17),
- 4.1.8 Certification (Section 16),
- 4.1.8Certification (Section 15),
- 4.1.9Disposition of rejected material (Section 13
- 4.1.9 Disposition of rejected material (Section 14), and
- 4.1.10 Supplementary requirements (S1).

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

🖽 B 381 – 08a

 TABLE 1 Tensile Requirements^A

Grade	Tensile S	Strength, min	Yield Strength (0.2	2 % Offset), min or Rang	geElongation in 4D,	Reduction of Area,
Ciade	ksi	(MPa)	ksi	(MPa)	min, %	min, %
F-1	35	(240)	20	(138)	24	30
F-2	50	(345)	40	(275)	20	30
F-2H ^{<i>B</i>,<i>C</i>}	58	(400)	40	(275)	20	30
F-3	65†	(450)†	55	(380)	18	30
F-4	80†	(550)†	70	(483)	15	25
F-5	130	(895)	120	(828)	10	25
F-6	120	(828)	115	(795)	10	25
F-7	50	(345)	40	(275)	20	30
F-7H ^{B,C}	58	(400)	40	(275)	20	30
F-9	120	(828)	110	(759)	10	25
=-9 ^D	90	(620)	70	(483)	15	25
F-11	35	(240)	20	(138)	24	30
F-12	70	(483)	50	(345)	18	25
F-13	40	(275)	25	(170)	24	30
F-14	60	(410)	40	(275)	20	30
F-15	70	(483)	55	(380)	18	25
F-16	50	(345)	40	(275)	20	30
F-16H ^{<i>B</i>,<i>C</i>}	58	(400)	40	(275)	20	30
F-17	35	(400)	20	(138)	20	30
F-18	90	(620)	70	(483)	15	25
F-18 ^D	90	(620)	70	(483)	12	20
F-10 F-19 ^E	115	(793)	110	(483) (759)	12	20
F-19 ⁻ F-19 ^F		()	130 to 159	· · · ·	10	25
F-19 F-19 ^G	135 165	(930) (1138)	160 to 185	(897) to (1096) (1104) to (1276)	5	20
F-19 F-20 ^E			110			
F-20 ⁻ F-20 ^F	115	(793)		(759)	15	25
	135	(930)	130 to 159	(897) to (1096)	10	20
F-20 ^G	165	(1138)	160 to 185	(1104) to (1276)	5	20
F-21 ^E	115	(793)	110	(759)	15	35
F-21 ^F	140	(966)	130 to 159	(897) to (1096)	10	30
F-21 ^G	170	(1172)	160 to 185	(1104) to (1276)	8	20
F-23	120	(828)	110	(759)	10	25
F-23 ^D	120	(828)	110	(759)	7.5 ^{<i>H</i>} , 6.0 ^{<i>I</i>}	25
F-24	130	(895)	120	(828)	10	25
F-25	130	(895)	120	(828)	10	25
F-26	50	(345)	40	(275)	20	30
F-26H ^{B,C}	58	(400)	mon 40 🖓	(275)	20	30
F-27	35	(240)	20	(138)	24	30
F-28	90	(620)	70	(483)	15	25
F-28 ^D	90	(620)	70	(483)	12	20
F-29_	120	(828)	ASTA 110 1_0	one (759)	10	25
F-29 ^D	120	(828)	AS INI 110 1-0	<u>0a</u> (759)	7.5 ^{<i>H</i>} , 6.0 ^{<i>I</i>}	15
F-30https://star	ndards.iteh.50/catal	og/stand (345)s/sis	/35fbb3740_169	$7_{-2}(275)_{-3}(80_{-1})$	10d556632004/astm	-b381_ 30 8a
F-31 ±	65	(450)	55	(380)	18	30
F-32	100	(689)	85	(586)	10	25
F-33	50	(345)	40	(275)	20	30
F-34	65	(450)	55	(380)	18	30
F-35	130	(895)	120	(828)	5	20
F-36	65	(450)	60 to 95	(410 to 655)	10	
F-37	50	(345)	31	(215)	20	30
F-38	130	(895)	115	(794)	10	25

^A These properties apply to forgings having a cross section no greater than 3 in.²(1935 mm²). Mechanical properties of forgings having greater cross sections shall be negotiated between the manufacturer and the purchaser. ^B Material is identical to the corresponding numeric grade (that is, Grade F-2H = Grade F-2) except for the higher guaranteed minimum UTS, and may be dual certified

^B Material is identical to the corresponding numeric grade (that is, Grade F-2H = Grade F-2) except for the higher guaranteed minimum UTS, and may be dual certified with its corresponding numeric grade. Grade F-2H, F-7H, F-16H, and F-26H are intended primarily for pressure vessel use. ^C The H grades were added in response to a user association request based on its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports where over 99 %

^C The H grades were added in response to a user association request based on its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports where over 99 % met the 58 ksi minimum UTS.

^D Properties for material in transformed-beta condition.

^{*E*} Properties for material in the solution treated condition.

F Properties for solution treated and aged condition-Moderate strength (determined by aging temperature).

^G Properties for solution treated and aged condition-High Strength (determined by aging temperature).

^H For product section or wall thickness values <1.0 in.

^{*i*} For product section or wall thickness values \leq 1.0 in.

† Tensile strength for Grade F-3 and F-4 was corrected editorially.

5. Materials and Manufacture

5.1 Material conforming to the latest revision of Specification B 348 shall be used when producing forgings to this specification.

6. Chemical Composition

6.1 The grades of titanium and titanium alloy metal covered by this specification shall conform to the requirements as to chemical composition prescribed in Table 2.

6.1.1 The elements listed in Table 2 are intentional alloy additions or elements which are inherent to the manufacturer of titanium sponge, ingot or mill product.

6.1.1.1 Elements other than those listed in Table 2 are deemed to be capable of occurring in the grades listed in Table 2 by and only by way of unregulated or unanalyzed scrap additions to the ingot melt. Therefore, product analysis for elements not listed in Table 2 shall not be required unless specified and shall be considered to be in excess of the intent of this specification.

6.1.2 Elements intentionally added to the melt must be identified, analyzed, and reported in the chemical analysis.

6.2 When agreed upon by the producer and purchaser and requested by the purchaser in his written purchase order, chemical analysis shall be completed for specific residual elements not listed in this specification.

6.3 *Product Analysis*— Product analysis tolerances do not broaden the specified heat analysis requirements, but cover variations between laboratories in the measurement of chemical content. The manufacturer shall not ship material which is outside the limits specified in Table 2 for the applicable grade. Product analysis limits shall be as specified in Table 3.

6.4 *Sampling*—Samples for chemical analysis shall be representative of material being tested. Except for hydrogen and unless otherwise specified, chemical analysis of ingot or billet shall be reported. Samples for hydrogen determination shall be obtained from the forgings on a test basis and a frequency as agreed upon between the forger and the purchaser. The utmost care must be used in sampling titanium for chemical analysis because of its great affinity for elements such as oxygen, nitrogen, and hydrogen. Therefore, the cutting and handling of samples should include practices that will prevent contamination. Samples shall be collected from clean metal.

6.5The methods of analysis used shall be in accordance with Test Methods E120, E1409, and E1447, as applicable, or as agreed upon between the manufacturer and the purchaser.

6.6At least two samples for chemical analysis shall be tested to determine chemical composition. Samples shall be taken from opposite extremes of the product to be analyzed.

6.5 At least two samples for chemical analysis shall be tested to determine chemical composition. Samples shall be taken from opposite extremes of the product to be analyzed.

7. Mechanical Properties

7.1Forgings supplied under this specification shall conform to the requirements as to mechanical properties specified in <u>Methods</u> of Chemical Analysis

7.1 The chemical analysis shall normally be conducted using the ASTM standard test methods referenced in 2.1. Other industry standard methods may be used where the ASTM test methods in 2.1 do not adequately cover the elements in the material or by agreement between the producer and purchaser. Alternate techniques are discussed in Guide E 2626.

8. Mechanical Properties

<u>8.1</u> Forgings supplied under this specification shall conform to the requirements as to mechanical properties specified in Table 1, as applicable.

78.2 Specimens for tension tests shall be machined and tested in accordance with Test Methods E 8. Tensile properties shall be determined using a strain rate of 0.003 to 0.007 in./in.·min through the specified yield strength. After the specified yield strength has been reached, the crosshead speed shall be increased to a rate sufficient to produce fracture in approximately one additional minute.

7.3

8.3 Sampling—Tension test specimens shall be machined from material as agreed upon by the manufacturer and the purchaser.

8.Nondestructive Tests

8.1Nondestructive test requirements such as ultrasonic test, X ray, or surface inspection shall be specified by the purchaser, if required. The standard for acceptance or rejection shall be agreed upon between the forger and the purchaser.

9. Dimensions and Permissible Variations

9.1Dimensions and tolerances of titanium and titanium alloy forgings covered by this specification shall be as shown on the applicable forging drawing or otherwise agreed upon by the manufacturer and the purchaser. Nondestructive Tests

<u>9.1 Nondestructive test requirements such as ultrasonic test, X ray, or surface inspection shall be specified by the purchaser, if required. The standard for acceptance or rejection shall be agreed upon between the forger and the purchaser.</u>

10. Workmanship, Finish and Appearance

10.1Titanium alloy forgings shall be free of injurious external and internal imperfections of a nature that will interfere with the

₩ B 381 – 08a

TABLE 2 Chemical Requirements^A

						Compo	osition, %													
Element	F-1	F-2	F-2H	F-3	F-4	F-5	F-6	F-7	F-7H	F-9	F-11	F-12								
Nitrogen, max	0.03	0.03	0.03	0.05	0.05	0.05	0.03	0.03	0.03	0.03	0.03	0.03								
Carbon, max	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08								
Hydrogen, ^{B,C} max	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015								
Iron, max	0.20	0.30	0.30	0.30	0.50	0.40	0.50	0.30	0.30	0.25	0.20	0.30								
Oxygen, max	0.18	0.25	0.25	0.35	0.40	0.20	0.20	0.25	0.25	0.15	0.18	0.25								
Aluminum						5.5-6.75	4.0-6.0			2.5-3.5										
Vanadium						3.5-4.5				2.0-3.0										
Tin							2.0-3.0													
Ruthenium																				
Palladium								0.12-0.25	0.12-0.2	5	0.12-0.25									
Cobalt																				
Volybdenum												0.2-0.4								
Chromium																				
Nickel												0.6-0.9								
Niobium																				
Zirconium																				
Silicon																				
Residuals, ^{D,E,F}	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1								
max each																				
Residuals, ^{D,E,F}	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4								
max total																				
Titanium ^G	balance	balance	balance	balance	balance	balance	balance	balance	balance	balance	balance	balance								
						Comp	osition, %													
Element																				
	F-13	F-14	F-15	F-16	F-16	6H F-1	7 F-	18 F	-19	F-20	F-21	F-23								
Nitrogen, max	0.03	0.03	0.05	0.03	0.03	3 0.03	3 0.	03 0.	03	0.03	0.03	0.03								
Carbon, max	0.08	0.08	0.08	0.08	0.08	0.0	. 0.	08 0.	05	0.05	0.05	0.08								
Hydrogon B,C may	0.015	0.015	0.015	0.015	0.01	5 0.0	15 0		02	0.02	0.015	0.0125								

Carbon, max	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.05	0.05	0.05	0.08
Hydrogen, ^{B,C} max	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.02	0.02	0.015	0.0125
Iron, max	0.20	0.30	0.30	0.30	0.30	0.20	0.25	0.30	0.30	0.40	0.25
Oxygen, max	0.10	0.15	0.25	0.25	0.25	0.18	0.15	0.12	0.12	0.17	0.13
Aluminum			US.	// Sta	15101	LUS.	2.5-3.5	3.0-4.0	3.0-4.0	2.5-3.5	5.5-6.5
Vanadium							2.0-3.0	7.5-8.5	7.5-8.5		3.5-4.5
Tin						Prov					
Ruthenium	0.04-0.06	0.04-0.06	0.04-0.06		anti	L.rev	Lew-				
Palladium				0.04-0.08	0.04-0.08	0.04-0.08	0.04-0.08		0.04-0.08		
Cobalt											
Molybdenum								3.5-4.5	3.5-4.5	14.0–16.0	
Chromium				AST	M B381	-08a		5.5-6.5	5.5-6.5		
Nickel	0.4-0.6	0.4-0.6	0.4-0.6								
Niobium S://standa	rds.teh.a	u/catalog/	standard	s/.s1st/351	bb372-10	697-4160	cad80-1	1.0d5566	<u>3.104/ast</u>	2.2-3.2	08a
Zirconium								3.5-4.5	3.5-4.5		
Silicon										0.15-0.25	
Residuals, ^{D,E,F} max	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.15	0.15	0.1	0.1
each											
Residuals, D, E, F max	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
total											
Titanium ^G	balance	balance	balance	balance	balance	balance	balance	balance	balance	balance	balance

Flomont	Composition, %										
Element	F-24	F-25	F-26	F-26H	F-27	F-28	F-29				
Nitrogen, max	0.05	0.05	0.03	0.03	0.03	0.03	0.03				
Carbon, max	0.08	0.08	0.08	0.08	0.08	0.08	0.08				
Hydrogen, ^{B,C} max	0.015	0.0125	0.015	0.015	0.015	0.015	0.015				
Iron, max	0.40	0.40	0.30	0.30	0.20	0.25	0.25				
Oxygen, max	0.20	0.20	0.25	0.25	0.18	0.15	0.13				
Aluminum	5.5-6.75	5.5-6.75				2.5-3.5	5.5-6.5				
Vanadium	3.5-4.5	3.5-4.5				2.0-3.0	3.5-4.5				
Tin											
Ruthenium			0.08-0.14	0.8-0.14	0.08-0.14	0.08-0.14	0.08-0.14				
Palladium	0.04-0.08	0.04-0.08									
Cobalt											
Molybdenum											
Chromium											
Nickel		0.3-0.8									
Niobium											
Zirconium											
Silicon											
Residuals, D, E, F max	0.1	0.1	0.1	0.1	0.1	0.1	0.1				
each											

€₽)	В	381	_	08a
-----	---	-----	---	-----

 TABLE 2
 Continued

			17		linuea								
F low out		Composition, %											
Element	F-24	F-	F-25 F		F-26H	F-27	F-28		F-29				
Residuals, ^{D,E,F} max total	0.4	0.4	4	0.4	0.4	0.4	(0.4	0.4				
Titanium ^G	balanc	e ba	llance	balance	balance	balance	e l	palance	balance				
_	Composition, %												
Element	F-30	F-31	F-32	F-33	F-34	F-35	F-36	F-37	F-38				
Nitrogen, max	0.03	0.05	0.03	0.03	0.05	0.05	0.03	0.03	0.03				
Carbon, max	0.08	0.08	0.08	0.08	0.08	0.08	0.04	0.08	0.08				
Hydrogen, ^{B,C} max	0.015	0.015	0.015	0.015	0.015	0.015	0.0035	0.015	0.015				
ron, max or range	0.30	0.30	0.25	0.30	0.30	0.20-0.80	0.03	0.30	1.2-1.8				
Oxygen, max or	0.25	0.35	0.11	0.25	0.35	0.25	0.16	0.25	0.20-0.30				
range													
Aluminum			4.5-5.5			4.0-5.0		1.0-2.0	3.5-4.5				
Vanadium			0.6-1.4			1.1-2.1			2.0-3.0				
Tin			0.6-1.4										
Ruthenium				0.02-0.04	0.02-0.04								
Palladium	0.04-0.08	0.04-0.08		0.01-0.02	0.01-0.02								
Cobalt	0.20-0.80	0.20-0.80											
Volybdenum			0.6-1.2			1.5-2.5							
Chromium				0.1-0.2	0.1-0.2								
Nickel				0.35-0.55	0.35-0.55								
Niobium							42.0-47.0						
Zirconium			0.6-1.4										
Silicon			0.06-0.14			0.20-0.40							
Residuals, ^{<i>D,E,F</i> max each}	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1				
Residuals, ^{D,E,F} max total	0.4	0.4	^{0.4} en	^{0.4}	0.4 arc	0.4	0.4	0.4	0.4				
Titanium ^G	balance	balance	balance	Remainder	Remainder	Remainder	Remainde	r Remainder	balance				

^A Analysis shall be completed for all elements listed in this table for each grade. The analysis results for the elements not quantified in the table need not be reported unless the concentration level is greater than 0.1 % each or 0.4 % total.

^B Lower hydrogen may be obtained by negotiation with the manufacturer.

^C Final product analysis.

^D Need not be reported.

^E A residual is an element present in a metal or an alloy in small quantities and is inherent to the manufacturing process but not added intentionally. In titanium these elements include aluminum, vanadium, tin, chromium, molybdenum, niobium, zirconium, hafnium, bismuth, ruthenium, palladium, yttrium, copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.

^F The purchaser may, in his written purchase order, request analysis for specific residual elements not listed in this specification.

^G The percentage of titanium is determined by difference.

purpose for which they are intended. Annealed forgings may be furnished as descaled, sandblasted, or ground. The manufacturer shall be permitted to remove minor surface imperfections by spot grinding if such grinding does not reduce the thickness of the forging below the minimum permitted by the tolerance for the forging at the applicable location. Dimensions and Permissible Variations

10.1 Dimensions and tolerances of titanium and titanium alloy forgings covered by this specification shall be as shown on the applicable forging drawing or otherwise agreed upon by the manufacturer and the purchaser.

11. Retests

11.1If the results of any chemical or mechanical property test lot are not in conformance with the requirements of this specification, the lot may be retested at the option of the manufacturer. The frequency of the retest will double the initial number of tests. If the results of the retest conform to the specification, then the retest values will become the test values for certification. Only original conforming test results or the conforming retest results shall be reported to the purchaser. If the results for the retest fail to conform to the specification, the material will be rejected in accordance with Section 13 Workmanship, Finish and Appearance

11.1 Titanium alloy forgings shall be free of injurious external and internal imperfections of a nature that will interfere with the purpose for which they are intended. Annealed forgings may be furnished as descaled, sandblasted, or ground. The manufacturer shall be permitted to remove minor surface imperfections by spot grinding if such grinding does not reduce the thickness of the forging below the minimum permitted by the tolerance for the forging at the applicable location.

12. Retests

<u>12.1 If the results of any chemical or mechanical property test lot are not in conformance with the requirements of this specification, the lot may be retested at the option of the manufacturer. The frequency of the retest will double the initial number of tests. If the results of the retest conform to the specification, then the retest values will become the test values for certification.</u>