SLOVENSKI STANDARD SIST EN IEC 61280-4-1:2019 01-oktober-2019 Nadomešča: SIST EN 61280-4-1:2010 Postopki preskušanja optičnega komunikacijskega podsistema - 4-1. del: Vgrajene žične oblike - Meritev mnogorodovnega slabljenja (IEC 61280-4-1:2019) Fibre-optic communication subsystem test procedures - Part 4-1: Installed cable plant - Multimode attenuation measurement (IEC 61280-4-1:2019) Prüfverfahren für Lichtwellenleiter-Kommunikationsuntersysteme - Teil 4-1: Lichtwellenleiter-Kabelanlagen - Mehrmoden-Dämpfungsmessungen (IEC 61280-4-1:2019) (standards.iteh.ai) Procédures d'essai des sous-systèmes de télécommunication à fibres optiques - Partie 4 -1: Installation câblée - Mesure de l'affaiblissement en multimodal (IEC 61280-4-1:2019) Ta slovenski standard je istoveten z: EN IEC 61280-4-1:2019 ICS: 33.180.01 Sistemi z optičnimi vlakni na Fibre optic systems in splošno general SIST EN IEC 61280-4-1:2019 en SIST EN IEC 61280-4-1:2019 # iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST EN IEC 61280-4-1:2019</u> https://standards.iteh.ai/catalog/standards/sist/fl cf467e-6cef-43c0-a12b-c63a955fa9be/sist-en-iec-61280-4-1-2019 **EUROPEAN STANDARD** NORME EUROPÉENNE **EUROPÄISCHE NORM** EN IEC 61280-4-1 August 2019 ICS 33.180.01 Supersedes EN 61280-4-1:2009 and all of its amendments and corrigenda (if any) ### **English Version** # Fibre-optic communication subsystem test procedures - Part 4-1: Installed cabling plant - Multimode attenuation measurement (IEC 61280-4-1:2019) Procédures d'essai des sous-systèmes de télécommunication fibroniques - Partie 4-1: Installation câblée - Mesure de l'affaiblissement en multimodal (IEC 61280-4-1:2019) Prüfverfahren für Lichtwellenleiter-Kommunikationsuntersysteme - Teil 4-1: Lichtwellenleiter-Kabelanlagen - Mehrmoden-Dämpfungsmessungen (IEC 61280-4-1:2019) This European Standard was approved by CENELEC on 2019-06-26. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. SIST EN IEC 61280-4-1:2019 https://standards.iteh.ai/catalog/standards/sist/flcf467e-6cef-43c0-a12b- CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels ## EN IEC 61280-4-1:2019 (E) # **European foreword** The text of document 86C/1575/FDIS, future edition 3 of IEC 61280-4-1, prepared by SC 86C "Fibre optic systems and active devices" of IEC/TC 86 "Fibre optics" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 61280-4-1:2019. The following dates are fixed: - latest date by which the document has to be implemented at national (dop) 2020-03-26 level by publication of an identical national standard or by endorsement - latest date by which the national standards conflicting with the document have to be withdrawn (dow) 2022-06-26 This document supersedes EN 61280-4-1:2009 and all of its amendments and corrigenda (if any) This edition constitutes a technical revision including the following significant technical changes with respect to the previous edition: - a) changes to Annex F on encircled flux to harmonise with IEC TR 62614-2, but keeping the encircled flux limits defined in Tables F.2 to F.5 unchanged; - b) addition of an equipment cord method in Annex D; - c) inclusion of testing bend insensitive multimode optical fibre: - d) updates to measurement uncertainty and ards. iteh.ai) - e) definition of additional cabling configurations: - f) changes to Table 5 on spectral requirements: c63a955fa9be/sist-en-iec-61280-4-1-2019 Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights. ## **Endorsement notice** The text of the International Standard IEC 61280-4-1:2019 was approved by CENELEC as a European Standard without any modification. In the official version, for Bibliography, the following notes have to be added for the standards indicated: | IEC 60793-1-40 | NOTE | Harmonized as EN IEC 60793-1-40 | |----------------|------|--| | IEC 60793-2 | NOTE | Harmonized as EN 60793-2 | | IEC 60793-2-10 | NOTE | Harmonized as EN 60793-2-10 | | IEC 60793-2-50 | NOTE | Harmonized as EN IEC 60793-2-50 | | IEC 60794-2-21 | NOTE | Harmonized as EN IEC 60794-2-21 | | IEC 61300-3-6 | NOTE | Harmonized as EN 61300-3-6 | | IEC 61300-3-45 | NOTE | Harmonized as EN 61300-3-45 | | IEC 61745 | NOTE | Harmonized as EN 61745 | | IEC 61755-6-2 | NOTE | Harmonized as EN IEC 61755-6-2 | | IEC 62664-1-1 | NOTE | Harmonized as EN 62664-1-1 | | IFC 62614·2010 | NOTE | Harmonized as FN 62614-2010 (not modified) | EN IEC 61280-4-1:2019 (E) # Annex ZA (normative) # Normative references to international publications with their corresponding European publications The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|-------------|---|---------------------------|-------------| | IEC 60825-2 | - | Safety of laser products - Part 2: Safety of optical fibre communication systems (OFCS) | EN 60825-2 | - | | IEC 61280-1-3 | - iT | Fibre optic communication subsystem test procedures Part 1-3: General communication subsystems Central wavelength and spectral width measurement N IEC 61280-4-12019 | EN 61280-1-3 | - | | IEC 61280-1-4 | _https://st | procedures a be sisted and subsystem test procedures a be sisted and a subsystem test procedures a be sisted and a subsystems and a subsystem | ⁰ ÉN²61280-1-4 | - | | IEC 61300-3-35 | - | Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 3-35: Examinations and measurements - Visual inspection of fibre optic connectors and fibre-stub transceivers | EN 61300-3-35 | - | | IEC 61315 | - | Calibration of fibre-optic power meters | EN IEC 61315 | - | | IEC 61746-2 | - | Calibration of optical time-domain reflectometers (OTDR) - Part 2: OTDR for multimode fibres | EN 61746-2 | - | SIST EN IEC 61280-4-1:2019 # iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST EN IEC 61280-4-1:2019</u> https://standards.iteh.ai/catalog/standards/sist/fl cf467e-6cef-43c0-a12b-c63a955fa9be/sist-en-iec-61280-4-1-2019 IEC 61280-4-1 Edition 3.0 2019-05 # INTERNATIONAL STANDARD # NORME INTERNATIONALE Fibre-optic communication subsystem test procedures E W Part 4-1: Installed cabling plant – Multimode attenuation measurement Procédures d'essai des sous systèmes de télécommunication fibroniques – Partie 4-1: Installation câblée « Mesure de l'affaiblissement en multimodal c63a955fa9be/sist-en-iec-61280-4-1-2019 INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE ICS 33.180.01 ISBN 978-2-8322-6893-3 Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé. # CONTENTS | FC | REWO | PRD | 7 | |----|----------|--|----| | 1 | Scop | re | 9 | | 2 | Norm | native references | 9 | | 3 | Term | is, definitions, graphical symbols and abbreviated terms | 9 | | | 3.1 | Terms and definitions | 10 | | | 3.2 | Graphical symbols | 12 | | | 3.3 | Abbreviated terms | 14 | | 4 | Test | methods | 14 | | | 4.1 | General | 14 | | | 4.2 | Cabling configurations and applicable test methods | 15 | | 5 | Over | view of uncertainties | | | | 5.1 | General | 17 | | | 5.2 | Sources of significant uncertainties | | | | 5.3 | Consideration of the PM | | | | 5.4 | Consideration of test cord connector grade | | | | 5.5 | Typical uncertainty values | | | 6 | Appa | rratus | 19 | | | 6.1 | General iTeh STANDARD PREVIEW | 19 | | | 6.2 | | | | | 6.2.1 | Stability (standards.iteh.ai) | 19 | | | 6.2.2 | | | | | 6.3 | Launch conds://standards.iteh.ai/catalog/standards/sist/fl.cf467.e-6cef-43c0-a12b- | 20 | | | 6.4 | Receive or tail cord c63a955fa9be/sist-en-icc-61280-4-1-2019 | 20 | | | 6.5 | Substitution cord | 21 | | | 6.6 | Power meter – LSPM methods only | 21 | | | 6.7 | OTDR apparatus | 21 | | | 6.8 | Connector end face cleaning and inspection equipment | 22 | | | 6.9 | Adapters | 22 | | 7 | Proce | edures | 22 | | | 7.1 | General | 22 | | | 7.2 | Common procedures | 22 | | | 7.2.1 | Care of the test cords | 22 | | | 7.2.2 | Make reference measurements (LSPM methods only) | 22 | | | 7.2.3 | Inspect and clean the ends of the optical fibres in the cabling | 22 | | | 7.2.4 | Make the measurements | 23 | | | 7.2.5 | Make the calculations | 23 | | | 7.2.6 | | | | | 7.3 | Calibration | | | | 7.4 | Safety | | | 8 | Calc | ulations | 23 | | 9 | Docu | ımentation | 23 | | | 9.1 | Information for each test | 23 | | | 9.2 | Information to be available | 24 | | Ar | inex A (| (normative) One-cord method | 25 | | | A.1 | Applicability of test method | 25 | | A.2 | Apparatus | 25 | |-----------|--|----| | A.3 | Procedure | 25 | | A.4 | Calculation | 26 | | A.5 | Components of reported attenuation | 26 | | Annex B (| normative) Three-cord method | 27 | | B.1 | Applicability of test method | 27 | | B.2 | Apparatus | | | B.3 | Procedure | 27 | | B.4 | Calculations | 28 | | B.5 | Components of reported attenuation | 28 | | Annex C | (normative) Two-cord method | 29 | | C.1 | Applicability of test method | 29 | | C.2 | Apparatus | 29 | | C.3 | Procedure | 29 | | C.4 | Calculations | 30 | | C.5 | Components of reported attenuation | 30 | | Annex D | (normative) Equipment cord method | 32 | | D.1 | Applicability of the test method | 32 | | D.2 | Apparatus | | | D.3 | Procedure | 32 | | D.4 | Procedure Teh STANDARD PREVIEW Calculation | 33 | | D.5 | Components of reported attenuation | | | D.6 | Typical uncertainty values | 34 | | Annex E (| normative) Optical time domain reflectometer 019 | | | E.1 | Applicability of the test methodog/standards/sist/flcf467e-6cef-43c0-a12b- | 35 | | E.2 | Apparatus | 35 | | E.2.1 | General | 35 | | E.2.2 | POTDR | 35 | | E.2.3 | Test cords | 35 | | E.3 | Procedure (test method) | 36 | | E.4 | Calculation | 37 | | E.4.1 | General | 37 | | E.4.2 | Connection location | 37 | | E.4.3 | Definition of power levels F_1 and F_2 | 38 | | E.4.4 | Alternative calculation | 38 | | E.5 | OTDR uncertainties | | | Annex F (| normative) Requirements for the source characteristics | | | F.1 | Encircled flux | | | F.2 | Assumptions and limitations | | | F.3 | Encircled flux templates | | | F.3.1 | | | | F.3.2 | | | | F.3.3 | · | | | F.4 | Graphical representation of templates | | | Annex G | (informative) OTDR configuration information | | | G.1 | General | | | G.2 | Fundamental parameters that define the operational capability of an OTDR | | | G.2.1 | · · · · · · · · · · · · · · · · · · · | | | - · - · | , | | | 1 | | |---|--| | | | | G.2.2 | Pulse width | 47 | |------------|--|----------| | G.2.3 | B Averaging time | 47 | | G.2.4 | Dead zone | 47 | | G.3 | Other parameters | 47 | | G.3.1 | | | | G.3.2 | 3 | | | G.3.3 | B Distance sampling | 48 | | G.4 | Other measurement configurations | | | G.4.1 | | | | G.4.2 | Macrobend or splice attenuation measurement | 48 | | G.4.3 | • | | | G.4.4 | Measurement with high reflection connectors or short length cabling | 49 | | G.4.5 | | | | G.5 | More on the measurement method | | | G.6 | Bi-directional measurement | | | G.7 | Non-recommended practices | | | G.7.1 | | _ | | G.7.2 | | | | Annex H (| informative) Test cord attenuation verification | | | H.1 | General Apparatus ITeh STANDARD PREVIEW | 55 | | H.2 | | | | H.3 | General (standards.iteh.ai) | 55 | | H.3.1 | General | 55 | | H.3.2 | Test cord verification for the one-cord and two-cord methods when using non-pinned/unpinned and non-plug/socket style connectors | 56 | | H.3.3 | Test cord verification for the one-cord and two-cord methods when using pinned/unpinned or plug/socket style connectors | 57 | | H.3.4 | Test cord verification for the three-cord method when using non-pinned/unpinned and non-plug/socket style connectors | 59 | | H.3.5 | Test cord verification for the three-cord method when using pinned/unpinned or plug/socket style connectors | 61 | | Annex I (r | normative) On the use of reference-grade test cords | 63 | | I.1 | General | 63 | | 1.2 | Practical configurations and assumptions | 63 | | 1.2.1 | Component specifications | | | 1.2.2 | Conventions | 64 | | 1.2.3 | Reference planes | 64 | | 1.3 | Impact of using reference grade test cords for recommended LSPM methods | 64 | | 1.4 | Examples for LSPM measurements | 65 | | 1.4.1 | Example 1 (configuration A, 1-C method – Annex A) | 65 | | 1.4.2 | Example 2 (configuration D, EC method – Annex D) | 65 | | 1.5 | Impact of using reference-grade test cords for different configurations using the OTDR test method | 66 | | 1.5.1 | Cabling configurations A, B and C | 66 | | 1.5.2 | Cabling configuration D | 67 | | | | | | Annex J (| informative) Launch cord output near-field verification | 69 | | Annex J (| informative) Launch cord output near-field verification Direct verification | | | • | , | 69 | | J.1 | Direct verification | 69
69 | | J.3.2 | Procedure for attenuation characterization of artefacts | 71 | |--------------|--|----| | J.3.3 | Construction details | | | J.3.4 | Example results | | | Bibliography | y | 76 | | | | | | - | Connector symbols | | | | Symbol for cabling under test | | | _ | Reference plane for configuration A tested with the 1-cord method | | | • | Reference plane for configuration B tested with the 3-cord method | | | _ | Reference plane for configuration C tested with the 2-cord method | | | _ | Reference plane for configuration D tested with the EC method | | | J | OTDR schematic | | | · · | - Reference measurement | | | Figure A.2 - | - Test measurement | 26 | | _ | - Reference measurement | | | _ | - Test measurement | | | _ | - Reference measurement | | | Figure C.2 - | - Test measurement | 30 | | | - Test measurement for plug-socket style connectors | | | Figure D.1 - | - Reference measurement dards.itch.ai) - Test measurement | 33 | | Figure D.2 - | - Test measurement | 33 | | | - OTDR method | | | Figure E.2 - | - Location of the ports of the capfing under test 7e-6cef-43c0-a12b-
c63a955fa9be/sist-en-iec-61280-4-1-2019
- Graphic construction of F_1 and F_2 | 37 | | Figure E.3 - | - Graphic construction of F_1 and F_2 | 38 | | Figure E.4 - | - Graphic construction of F_1 , F_{11} , F_{12} and F_2 | 40 | | Figure F.1 - | - Encircled flux example | 45 | | | - Splice and macrobend attenuation measurement | | | Figure G.2 - | - Attenuation measurement with high reflection connectors | 50 | | Figure G.3 - | - Attenuation measurement of a short length cabling | 51 | | Figure G.4 - | - OTDR trace with ghost | 52 | | Figure G.5 - | - Cursor positioning | 53 | | Figure H.1 - | - Obtaining reference power level P ₀ | 57 | | | - Obtaining power level P_{1} | | | Figure H.3 - | - Obtaining reference power level P ₀ | 58 | | Figure H.4 - | - Obtaining power level P ₁ | 58 | | Figure H.5 - | - Obtaining reference power level P ₀ | 59 | | Figure H.6 - | - Obtaining power level | 59 | | _ | Obtaining reference power level $P_{f 0}$ | | | Figure H.8 - | - Obtaining power level P ₁ | 60 | | Figure H.9 - | - Obtaining power level $P_{f 5}$ | 61 | | Figure H.10 | – Obtaining reference power level <i>P</i> ₀ | 62 | | Figure H.11 – Obtaining power level P_1 | 62 | |--|----| | Figure I.1 – Cabling configurations A, B and C tested with the OTDR method | 66 | | Figure I.2 – Cabling configuration D tested with the OTDR method | 68 | | Figure J.1 – Initial power measurement | 70 | | Figure J.2 – Verification of reference-grade connection | 70 | | Figure J.3 – Two offset splices | 70 | | Figure J.4 – Five offset splices | 71 | | Figure J.5 – EF centred | 72 | | Figure J.6 – EF underfilling | 73 | | Figure J.7 – EF overfilling | 73 | | Figure J.8 – L1 attenuation with mandrel | 74 | | Figure J.9 – L1 attenuation with mandrel and mode conditioner | 74 | | Figure J.10 – L2 attenuation with mandrel | 74 | | Figure J.11 – L2 attenuation with mandrel and mode conditioning | 75 | | Figure J.12 – L3 attenuation with mandrel | 75 | | Figure J.13 – L3 attenuation with mandrel and mode conditioning | 75 | | Table 1 – Cabling configurations T.A.N.D.A.R.D.PREVIEW | 15 | | Table 2 – Test methods and configurations | 15 | | Table 2 – Test methods and configurations | 18 | | Table 4 – Uncertainty for a given attenuation at 850 nm | | | Table 5 – Spectral requirements itch ai/catalog/standards/sist/f1cf467e-6cef-43c0-a12b | 19 | | Table D.1 – Uncertainty for a given attehuation at 8508nm 1-2019. | | | Table F.1 – Attenuation, threshold tolerance and confidence level | 43 | | Table F.2 – EF requirements for 50 µm core optical fibre cabling at 850 nm | 43 | | Table F.3 – EF requirements for 50 μm core optical fibre cabling at 1 300 nm | 44 | | Table F.4 – EF requirements for 62,5 μm core optical fibre cabling at 850 nm | 44 | | Table F.5 – EF requirements for 62,5 μm core optical fibre cabling at 1 300 nm | 44 | | Table G.1 – Default effective group index of refraction values | 48 | | Table I.1 – Measurement bias when using reference-grade test cords | 65 | | Table I.2 – Measurement bias when using reference grade test cords – OTDR test | | IEC 61280-4-1:2019 © IEC 2019 **-7-** ## INTERNATIONAL ELECTROTECHNICAL COMMISSION ## FIBRE-OPTIC COMMUNICATION SUBSYSTEM TEST PROCEDURES - # Part 4-1: Installed cabling plant – Multimode attenuation measurement #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies ds/sist/flcf467e-6cef-43c0-a12b- - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61280-4-1 has been prepared by subcommittee 86C: Fibre optic systems and active devices, of IEC technical committee 86: Fibre optics. This third edition cancels and replaces the second edition, published in 2009. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: - a) changes to Annex F on encircled flux to harmonise with IEC TR 62614-2, but keeping the encircled flux limits defined in Tables F.2 to F.5 unchanged; - b) addition of an equipment cord method in Annex D; - c) inclusion of testing bend insensitive multimode optical fibre; - d) updates to measurement uncertainty; - e) definition of additional cabling configurations; - f) changes to Table 5 on spectral requirements. IEC 61280-4-1:2019 © IEC 2019 The text of this International Standard is based on the following documents: | FDIS | Report on voting | |---------------|------------------| | 86C/1575/FDIS | 86C/1592/RVD | - 8 - Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table. This document has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all parts in the IEC 61280 series, published under the general title *Fibre optic communication subsystem test procedures*, can be found on the IEC website. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be - reconfirmed, - withdrawn, - replaced by a revised edition, or - amended. # iTeh STANDARD PREVIEW IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. <u>/standards.iten.a/catalog/standards/sist/11c146/e-6ce1-4.</u> c63a955fa9be/sist-en-iec-61280-4-1-2019 IEC 61280-4-1:2019 © IEC 2019 _ 9 _ ### FIBRE-OPTIC COMMUNICATION SUBSYSTEM TEST PROCEDURES - # Part 4-1: Installed cabling plant – Multimode attenuation measurement #### 1 Scope This part of IEC 61280 is applicable to the measurement of attenuation of installed optical fibre cabling plant using multimode optical fibre. This cabling plant can include multimode optical fibres, connectors, adapters, splices, and other passive devices. The cabling can be installed in a variety of environments including residential, commercial, industrial, and data centre premises, as well as outside plant environments. The test equipment used in this document has one single fibre connector interface or two single fibre connector interfaces. In this document, the optical fibres that are addressed include sub-categories A1-OMx, where x = 2, 3, 4 and 5 (50/125 μ m) and A1-OM1 (62,5/125 μ m) multimode optical fibres, as specified in IEC 60793-2-10. The attenuation measurements of the other multimode categories can be made using the approaches of this document, but the source conditions for the other categories have not been defined. # 2 Normative references STANDARD PREVIEW The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. SIST EN IEC 61280-4-12019 https://standards.iteh.ai/catalog/standards/sist/flcf467e-6cef-43c0-a12b- IEC 60825-2, Safety of laser products — Part 2: Safety of optical fibre communication systems (OFCS) IEC 61280-1-3, Fibre optic communication subsystem test procedures — Part 1-3: General communication subsystems — Central wavelength and spectral width measurement IEC 61280-1-4, Fibre optic communication subsystem test procedures – Part 1-4: General communication subsystems – Light source encircled flux measurement method IEC 61300-3-35, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 3-35: Examinations and measurements – Visual inspection of fibre optic connectors and fibre-stub transceivers IEC 61315, Calibration of fibre-optic power meters IEC 61746-2, Calibration of optical time-domain reflectometers (OTDR) – Part 2: OTDR for multimode fibres #### 3 Terms, definitions, graphical symbols and abbreviated terms For the purposes of this document, the following terms, definitions, graphical symbols and abbreviated terms apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: