

SLOVENSKI STANDARD oSIST prEN 12916:2017

01-julij-2017

Naftni proizvodi - Določevanje aromatskih ogljikovodikov v srednjih destilatih - Metoda tekočinske kromatografije visoke ločljivosti z detekcijo lomnega količnika

Petroleum products - Determination of aromatic hydrocarbon types in middle distillates - High performance liquid chromatography method with refractive index detection

Mineralölerzeugnisse - Bestimmung von aromatischen Kohlenwasserstoffgruppen in Mitteldestillaten - Hochleistungsflüssigkeitschromatographie-Verfahren mit Brechzahl-Detektion

Produits pétroliers - Détermination des familles d'hydrocarbures dans les distillats moyens - Méthode par chromatographie liquide à haute performance avec détection par réfractométrie différentielle

Ta slovenski standard je istoveten z: prEN 12916

ICS:

71.040.50 Fizikalnokemijske analitske Physicochemical methods of

metode analysis

75.080 Naftni proizvodi na splošno Petroleum products in

general

oSIST prEN 12916:2017 en,fr,de

oSIST prEN 12916:2017

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 12916:2019

https://standards.iteh.ai/catalog/standards/sist/5f4a86ac-aaa8-4022-970e-b91f7bd2d020/sist-en-12916-2019

oSIST prEN 12916:2017

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

DRAFT prEN 12916

June 2017

ICS 75.080

Will supersede EN 12916:2016

English Version

Petroleum products - Determination of aromatic hydrocarbon types in middle distillates - High performance liquid chromatography method with refractive index detection

Produits pétroliers - Détermination des familles d'hydrocarbures dans les distillats moyens - Méthode par chromatographie liquide à haute performance avec détection par réfractométrie différentielle Mineralölerzeugnisse - Bestimmung von aromatischen Kohlenwasserstoffgruppen in Mitteldestillaten -Hochleistungsflüssigkeitschromatographie-Verfahren mit Brechzahl-Detektion

This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee CEN/TC 19.

If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning: This document is not a European Standard. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a European Standard.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

COII	tents	Page
European foreword		3
1	Scope	4
2	Normative references	4
3	Terms and definitions	5
4	Principle	6
5	Reagents and materials	6
6	Apparatus	7
7	Sampling	8
8	Apparatus preparation	8
9	Calibration	
10 10.1 10.2 10.3	ProcedureProcedure A for products with an expected concentration up to 30 % (V/V)Procedure B for products with an expected low concentration up to 7 %Procedure A and B continuation	12 12 13
11 11.1 11.2 11.3 11.4	Calculation	15 15 15 16
12	Expression of results	16
13 13.1 13.2 13.3	Precision	16 16
14	Test report	17
Anne	x A (informative) Column selection and use	18
Anne	x B (informative) Practical instructions for paraffinic diesel fuel samples	19
Bibliography		20

European foreword

This document (prEN 12916:2017) has been prepared by Technical Committee CEN/TC 19 "Gaseous and liquid fuels, lubricants and related products of petroleum, synthetic and biological origin", the secretariat of which is held by NEN.

This document is currently submitted to the CEN Enquiry.

This document will supersede EN 12916:2016.

Major change compared to the previous version is the addition of a method for the analysis of very low contents of aromatics. The method now comprises two procedures, A and B. Procedure A covers conventional diesel fuels and other distillates. Procedure B is set up for paraffinic diesel fuels which do not require a dilution step and column backflush. Both procedures have a separate precision statement.

Additionally, the required accuracy of the mass of the system calibration standards 1 and 2 was increased from $0,001\,\mathrm{g}$ to $0,000\,\mathrm{1}\,\mathrm{g}$.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 12916:2019</u> https://standards.iteh.ai/catalog/standards/sist/5f4a86ac-aaa8-4022-970e b91f7bd2d020/sist-en-12916-2019

1 Scope

This European Standard specifies a test method for the determination of the content of mono-aromatic, di-aromatic and tri+-aromatic hydrocarbons in Diesel fuels, paraffinic Diesel fuels and petroleum distillates.

This European Standard defines two procedures, A and B.

Procedure A is applicable to diesel fuels that may contain fatty acid methyl esters (FAME) up to 30 % (V/V) and petroleum distillates in the boiling range from $150 \degree \text{C}$ to $400 \degree \text{C}$.

Procedure B is applicable to paraffinic Diesel fuels with up to 7 % (V/V) FAME. This procedure does not contain a dilution of the sample in order to determine the low levels of aromatic components in these fuels.

The polycyclic aromatic hydrocarbons content is calculated from the sum of di-aromatic and tri+aromatic hydrocarbons and the total content of aromatic compounds is calculated from the sum of the individual aromatic hydrocarbon types.

Compounds containing sulfur, nitrogen and oxygen can interfere in the determination; mono-alkenes do not interfere, but conjugated di-alkenes and poly-alkenes, if present, can do so.

NOTE 1 For the purpose of this European Standard, the terms "(m/m)" and "(V/V)" are used to represent the mass fraction and the volume fraction of a material respectively.

NOTE 2 By convention, the aromatic hydrocarbon types are defined on the basis of their elution characteristics from the specified liquid chromatography column relative to model aromatic compounds. Their quantification is performed using an external calibration with a single aromatic compound for each of them, which may or may not be representative of the aromatics present in the sample. Alternative techniques and test methods may classify and quantify individual aromatic hydrocarbon types differently.

WARNING — The use of this standard can involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of users of this standard to take appropriate measures to ensure the safety and health of personnel prior to application of the standard, and fulfil statutory and regulatory requirements for this purpose.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 14214, Liquid petroleum products — Fatty acid methyl esters (FAME) for use in diesel engines and heating applications — Requirements and test methods

EN ISO 1042, Laboratory glassware — One-mark volumetric flasks (ISO 1042)

EN ISO 3170, Petroleum liquids — Manual sampling (ISO 3170)

EN ISO 3171, Petroleum liquids — Automatic pipeline sampling (ISO 3171)

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

non-aromatic hydrocarbon

compound having a shorter retention time on the specified polar column than the majority of monoaromatic hydrocarbons

3.2

mono-aromatic hydrocarbon

MAH

compound having a longer retention time on the specified polar column than the majority of non-aromatic hydrocarbons, but a shorter retention time than the majority of di-aromatic hydrocarbons

3.3

di-aromatic hydrocarbon

DAH

compound having a longer retention time on the specified polar column than the majority of monoaromatic hydrocarbons, but a shorter retention time than the majority of tri+-aromatic hydrocarbons

3.4

tri+-aromatic hydrocarbon

T+AH

compound having a longer retention time on the specified polar column than the majority of diaromatic hydrocarbons, but a shorter retention time than chrysene

3.5

polycyclic aromatic hydrocarbon SIST EN 12916:2019

POLY-AH

sum of the di-aromatic hydrocarbons and tri+-aromatic hydrocarbons

3.6

total aromatic hydrocarbon

sum of the mono-aromatic hydrocarbons, di-aromatic hydrocarbons and tri+-aromatic hydrocarbons

Note 1 to entry: Published and unpublished data indicate that the major constituents for each hydrocarbon type may include:

- a) non-aromatic hydrocarbons: acyclic and cyclic alkanes (paraffins and naphthenes), mono-alkenes (if present),
- b) MAHs: benzenes, tetralins, indanes and higher naphthenobenzenes (e.g. octahydrophenanthrenes), thiophenes, styrenes, conjugated polyalkenes,
- c) DAHs: naphthalenes, biphenyls, indenes, fluorenes, acenaphthenes, benzothiophenes and dibenzothiophenes,
- d) T+AHs: phenanthrenes, pyrenes, fluoranthenes, chrysenes, triphenylenes, benzanthracenes.

3.7

fatty acid methyl ester

FAME

mixture of fatty acid methyl esters derived from vegetable oil or animal fats and complying to the specification defined in EN 14214

4 Principle

A known mass of sample is taken and a fixed volume of this sample is injected into a high performance liquid chromatograph fitted with a polar column. Conventional Diesel Fuels with a concentration of up to 30% (V/V) need to be diluted with heptane (Procedure A). Paraffinic Diesel fuels are injected neat (Procedure B).

This column has little affinity for non-aromatic hydrocarbons, while exhibiting a strong selectivity for aromatic hydrocarbons. As a result of this selectivity, the aromatic hydrocarbons are separated from the non-aromatic hydrocarbons and into distinct bands according to their ring structure, i.e. MAH, DAH and T+AH compounds.

The column is connected to a refractive index detector which detects the components as they elute from the column. The electronic signal from the detector is continually monitored by a data processor. The amplitudes of the signals from the aromatics in the sample are compared with those obtained from calibration standards in order to calculate the mass fraction of MAHs, DAHs and T+AHs in the sample. The sum of the DAHs and T+AHs mass fractions is reported as the mass fraction of POLY-AH, and the sum of the MAHs, DAHs and T+AHs mass fractions is reported as the mass fraction of total aromatic hydrocarbons.

When following Procedure A, the column may be backflushed after the aromatics have eluted from the column to allow any remaining components such as FAME to elute in a backflush peak. This will allow for a better cleaning of the column but care should be taken as it can affect the lifetime of the column.

5 Reagents and materials TANDARD PREVIEW

5.1 General

The highest purity reagents and materials available should be used; those required to be of high performance liquid chromatography (HPLC) grade are commercially available from major suppliers.

5.2 Cyclohexane, of 99 % (m/m) minimum purity (CAS registry number 110-82-7).

NOTE Cyclohexane can contain benzene as an impurity.

5.3 Heptane, HPLC analytical grade, as the mobile phase (CAS registry number 142-82-5).

Batch to batch variation of the solvent water content, viscosity, refractive index, and purity can cause unpredictable column behaviour. Drying (for example, by standing over activated molecular sieve type 5A) and filtering the mobile phase can help reducing the effect of trace impurities present in the solvent.

It is recommended practice to de-gas the mobile phase before use; this can be done conveniently online or off-line by helium sparging, vacuum degassing or ultrasonic agitation. A failure to de-gas the mobile phase can lead to negative peaks.

- **1-Phenyldodecane**, of 98 % (*m/m*) minimum purity (CAS registry number 123-01-3).
- **5.5 1,2-Dimethylbenzene** (*o*-xylene), of 98 % (m/m) minimum purity (CAS registry number 95-47-6).
- **5.6 Hexamethylbenzene,** of 98 % (m/m) minimum purity (CAS registry number 87-85-4).
- **5.7 Naphthalene,** of 98 % (m/m) minimum purity (CAS registry number 91-20-3).
- **5.8 Fluorene**, of 98 % (m/m) minimum purity (CAS registry number 86-73-7).
- **5.9 Phenanthrene**, of 98 % (*m/m*) minimum purity (CAS registry number 85-01-8).

- **5.10 Dibenzothiophene**, of 95 % (m/m) minimum purity (CAS registry number 132-65-0).
- **5.11 9-Methylanthracene,** of 95 % (m/m) minimum purity (CAS registry number 779-02-2).
- **5.12 Chrysene**, of 95 % (m/m) minimum purity (CAS registry number 218-01-9).
- **5.13 FAME,** compliant to EN 14214.

WARNING — Protective gloves should be worn when handling aromatic compounds.

6 Apparatus

- **6.1 Liquid chromatograph,** consisting of a high performance instrument capable of pumping the mobile phase at flow rates from 0.5 ml/min to 1.5 ml/min, with a precision better than 0.5 % and a pulsation of < 1 % full scale deflection under the test conditions described in Clause 8.
- **6.2 Sample injection system,** capable of nominally injecting $10 \, \mu l$ of sample solution with a repeatability better than $1 \, \%$.

Equal and constant volumes of the calibration and sample solutions are injected into the chromatograph. Both manual and automatic sample injection systems, using either complete or partial filling of the sample loop, can meet these repeatability requirements when used correctly. When using the partial filling mode, it is recommended that the injection volume is less than half the total loop volume. For complete filling of the loop, best results are obtained by overfilling the loop at least six times.

The repeatability of the injection system can be checked by comparing peak areas from at least four injections of the system calibration standard (see 8.3).

Sample and calibration injection volumes different from $10 \mu l$ (typically in the range $3 \mu l$ to $20 \mu l$) may be used provided they meet the requirements for injection repeatability, refractive index sensitivity and linearity (see 9.4), and column resolution (see 8.9).

6.3 Sample filter, if required (see 10.1), consisting of a microfilter of porosity $0.45 \, \mu m$ or less, chemically inert towards hydrocarbon solvents, for the removal of particulate matter from the sample solutions.

NOTE Polytetrafluorethylen (PTFE) filters have been found to be suitable.

- **6.4 Column system,** consisting of a stainless steel HPLC column(s) packed with a commercial 3 μ m, 5 μ m or 10 μ m amino-bonded (or amino/cyano-bonded) silica stationary phase meeting the resolution requirements given in 8.6, 8.7, 8.9 and 8.11 . See Annex A for guidance on the selection and use of suitable column systems.
- **6.5 Temperature controls,** for different parts of the apparatus (column, sample injection system, solvent, refractive index detector). Maintain the sample injection system at the same temperature as the sample solution, for the column a heating block or an air-circulating HPLC column oven may be used. Also, a temperature-controlled laboratory, capable of maintaining a constant temperature in the range (20 ± 1) °C to (40 ± 1) °C may be used.

The refractive index detector is sensitive to both sudden and gradual changes in the temperature of the eluent. All necessary precautions should be taken to establish constant temperature conditions throughout the liquid chromatograph system. The temperature should be optimized depending on the stationary phase.

6.6 Refractive index detector, capable of being operated over the refractive index range 1,3 to 1,6 and giving a linear response over the calibration ranges with a suitable output signal for the data system.

If the detector is equipped with a device for independent temperature control, it is recommended that it is set at the same temperature as the column oven.

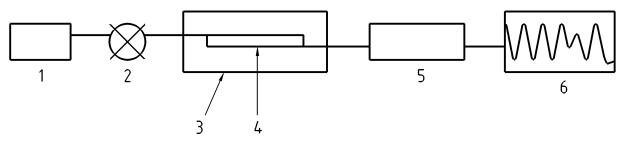
6.7 Computer or computing integrator, compatible with the refractive index detector, having a minimum sampling rate of 1 Hz and capable of peak area and retention time measurements. It shall also have minimum capabilities for post-analysis data processing such as baseline correction and reintegration.

The ability to perform automatic peak detection and identification and to calculate sample concentrations from peak area measurements is recommended, but is not essential.

- **6.8 Volumetric flasks,** 10 ml and 100 ml capacity, conforming to grade A of EN ISO 1042.
- **6.9 Analytical balance,** with an accuracy of ± 0,000 1 g.

7 Sampling

Unless otherwise specified in the commodity specification, samples shall be taken as described in EN ISO 3170 or EN ISO 3171 and/or in accordance with the requirements of national standards or regulations for the sampling of the product under test.


Paraffinic diesel fuel samples analysed according to Procedure B require specific storage conditions:

- A storage temperature of $19 \,^{\circ}\text{C} \pm 5 \,^{\circ}\text{C}$ shall be maintained. If for some reason, the samples have been exposed to temperatures above $25 \,^{\circ}\text{C}$ for a long period during storage or in custody (that you are aware of), this shall be reported.
- At least 24 h before a test the blend shall be placed at ambient temperature. 4022-970e
- When a portion of the sample is removed for use in a test, air admitted to the container shall be replaced by nitrogen or helium before closing the container tight.

8 Apparatus preparation

- **8.1** Ensure that the equipment and any sample distribution system is clean and dry before use. Make sure that the equipment for handling or testing the sample is not sensitive to FAME. Recommended materials are Polytetrafluoroethylene, Viton® and Nylon.
- **8.2** Set up the liquid chromatograph (6.1), sample injection system (6.2), column (6.4), refractive index detector (6.6) and computing integrator (6.7) as in Figure 1 and in accordance with the manufacturer's manuals. If a column oven is used (6.5), install the HPLC column in the column oven. Maintain the sample injection system at the same temperature as the sample solution; in most cases this should be at room temperature.

Regular maintenance of the liquid chromatograph and its components is important and thus recommended to ensure consistent performance. Leakages and partial blockage of filters, frits, injector needles and valve rotors can produce flow rate inconsistencies and poor injector repeatability.

Key

- 1 pump
- 2 injection device
- 3 oven

- 4 column
- 5 refractive index detector
- 6 data acquisition system

Figure 1 — Diagrammatic representation of a liquid chromatograph

8.3 Adjust the flow rate of the mobile phase to a constant between 0,8 ml/min and 1,2 ml/min and ensure the reference cell of the refractive index detector is full of mobile phase. Allow the temperature of the column and of the refractive index detector, if it is equipped with temperature control, to stabilize.

In order to minimize instrument drift, the reference cell of the detector should be filled with mobile phase, either by flushing mobile phase through the reference cell immediately prior to the analysis, and then isolating the reference cell to prevent evaporation, or by compensating for evaporation by supplying a steady flow of mobile phase through the reference cell. The flow should be optimized so that cell mismatch due to drying-out (reference cell) or temperature or pressure gradients (reference or analysis cells, depending the type of detector) are minimized; with some detectors this can be accomplished using a mobile phase flow through the reference cell of one tenth of that through the analysis cell.

- **8.4** Prepare into a 100 ml volumetric flask a system calibration standard 1 (SCS1) by weighing to the nearest 0,0001 g:
- (1,0 ± 0,1) g cyclohexane (5.2),
- (0,1 ± 0,01) g 1-phenyldodecane (5.4),
- (0,5 ± 0,05) g 1,2-dimethylbenzene (5.5),
- (0,1 ± 0,01) g hexamethylbenzene (5.6),
- (0,1 ± 0,01) g naphthalene (5.7),
- (0,05 ± 0,005) g dibenzothiophene (5.10), and
- (0,05 ± 0,005) g 9-methylanthracene (5.11).

Place the flask and its contents into an ultrasonic bath until a visual examination shows that all the components have dissolved into the 1,2-dimethylbenzene/cyclohexane mixture. Remove from the ultrasonic bath and make up to the mark with heptane.

The SCS1 may be kept for at least one year if stored in a tightly stoppered bottle in a cool dark place (for example in a refrigerator).