FINAL **DRAFT** # INTERNATIONAL **STANDARD** # ISO/FDIS 17881-1 ISO/TC 38 Secretariat: SAC Voting begins on: 2015-09-10 Voting terminates on: 2015-11-10 # Textiles — Determination of certain **Brominated flame retardants** Textiles — Determination de certains retardateurs de flamme — Jants— Janta Hamman Andrews A RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION. IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STAN-DARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS. Please see the administrative notes on page iii Reference number ISO/FDIS 17881-1:2015(E) # ISO/CEN PARALLEL PROCESSING This final draft has been developed within the International Organization for Standardization (ISO), and processed under the **ISO-lead** mode of collaboration as defined in the Vienna Agreement. The final draft was established on the basis of comments received during a parallel enquiry on the draft. This final draft is hereby submitted to the ISO member bodies and to the CEN member bodies for a parallel two-month approval vote in ISO and formal vote in CEN. Positive votes shall not be accompanied by comments. Negative votes shall be accompanied by the relevant technical reasons. #### COPYRIGHT PROTECTED DOCUMENT © ISO 2015, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Foreword | | | |----------|--|----| | Fore | reword | iv | | 1 | Scope | 1 | | 2 | Principle | 1 | | 3 | Reagents | 1 | | 4 | Apparatus | 2 | | 5 | Procedure 5.1 Preparation of standard solutions 5.1.1 Stock standard solution 5.1.2 Internal standard solution 5.1.3 Working solution 5.2 Preparation of test specimen 5.3 Ultrasonic wave extraction 5.4 Flame retardants determination | | | 6 | Calculation | 3 | | 7
Ann | | | | Ann | nex A (informative) Test parameters by GC-MS nex B (informative) Round Robin test Standards and st | 7 | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 38, Textiles. ISO 17881 consists of the following parts, under the general title *Textiles — Determination of certain flame retardants*: - Part 1: Brominated flame retardants - Part 2: Phosphorus flame retardants The following part is under preparation. — Part 3: Chlorinated paraffin flame retardants # Textiles — Determination of certain flame retardants — ## Part 1: # **Brominated flame retardants** WARNING — This International Standard calls for the use of substances and/or procedures that may be injurious to health if adequate precautions are not taken. It refers only to technical suitability and does not absolve the user from legal obligations relating to health and safety at any stage. It has been assumed in the drafting of this International Standard that the execution of its provisions is entrusted to appropriately qualified and experienced people. #### 1 Scope This part of ISO 17881 specifies a test method for determining some brominated flame retardants in textiles by gas chromatography – mass spectrometry (GC-MS). The method is applicable to all kinds of textile products. # 2 Principle The flame retardants are extracted from textile specimen by ultrasonic generator with toluene. The flame retardants in the specimen are identified by GC-MS and quantified by using internal standard method. # 3 Reagents Unless otherwise specified, use only reagents of recognized analytical grade. - 3.1 Monobromobiphenyl (MonoBB) CAS no. 2052-07-5. - **3.2 Dibromobiphenyl (DiBB)**, CAS no. 57422-77-2. - **3.3** Tribromobiphenyl (TriBB), CAS no. 59080-34-1. - **3.4** Tetrabromobiphenvl (TetraBB), CAS no. 60044-24-8. - **3.5 Pentabromo-1,1'-biphenyl (PentaBB)**, CAS no. 59080-39-6. - **3.6 Hexabromobiphenyl (HexaBB),** CAS no. 60044-26-0. - **3.7 Heptabromo-1,1'-biphenyl (HeptaBB)**, CAS no. 88700-06-5. - **3.8** Octabromobiphenyl (OctaBB), CAS no. 67889-00-3. - 3.9 Nonabromobiphenyl (NonaBB), CAS no. 69278-62-2. - 3.10 Decabromobiphenyl (DecaBB), CAS no. 13654-09-6. - **3.11 Tetrabromodiphenylether (TetraBDE)**, CAS no. 5436-43-1. #### ISO/FDIS 17881-1:2015(E) - **3.12 Pentabromodiphenylether (PentaBDE)**, CAS no.32534-81-9. - 3.13 Hexabromodiphenylether (HexaBDE), CAS no. 207122-15-4. - 3.14 Heptabromodiphenylether (HeptaBDE), CAS no. 207122-16-5. - **3.15** Octabromodiphenylether (OctaBDE), CAS no. 337513-72-1. - **3.16** Decabromodiphenylether (DecaBDE), CAS no. 1163-19-5. - 3.17 Hexabromocyclododecane (HBCDD), CAS no. 25637-99-4. - **3.18 Decachlorobiphenyl**, CAS no.2051-24-3, internal standard (IS). - 3.19 Toluene. NOTE Since brominated flame retardants have many isomers, this method might not cover all of them. Determination of the isomers of flame retardants in <u>Clause 3</u> can refer to this method according to the principle. ### 4 Apparatus - 4.1 Gas chromatography mass spectrometry (GC-MS). - **4.2 Ultrasonic generator**, with a frequency from 35 kHz to 45 kHz. - **4.3** Evaporator device, with water bath at 50 °C. - **4.4 Brown glass vial**, 40 ml with tight closure. - **4.5** Flask, 100 ml. - **4.6 Filtration membrane**, 0,45 μm. - **4.7 Balance**, an accuracy of 0,1 mg. #### 5 Procedure #### 5.1 Preparation of standard solutions #### 5.1.1 Stock standard solution Prepare 1 000 μ g/ml of stock standard solutions with individual flame retardant (3.1 to 3.17) and internal standard (3.18) in toluene (3.19). Some commercial reference material solutions may be available in a different solvent. #### 5.1.2 Internal standard solution Prepare 10 μg/ml standard solution of decachlorobiphenyl in toluene. #### 5.1.3 Working solution Prepare an admixture working solution of 17 flame retardants in internal standard solution (5.1.2) and dilute it to a series of suitable concentrations depending on test needs. Select at least five dilutions of the calibration sets to create calibration curve and perform GC-MS analysis. #### 5.2 Preparation of test specimen Prepare a representative test specimen of the sample. Cut it into small pieces and weigh $(1,00 \pm 0,01)$ g of the pieces with a balance (4.7). #### 5.3 Ultrasonic wave extraction Put the pieces in a vial with tight closure (4.4) and add 20 ml of toluene. Place the vial in an ultrasonic generator (4.2) and extract the pieces for 30 min at room temperature. Filter and transfer the extract into 100 ml flask (4.5). Add 10 ml of toluene to the residue in the vial and place the vial in the ultrasonic generator to extract the residue for 15 min at room temperature. Filter and merge the extract into the flask (4.5). Evaporate the extract to near dryness by evaporator device (4.3). Add 2 ml of internal standard solution (5.1.2) to dissolve the residue and then filter by filtration membrane (4.6). The filtrate is ready for determination of flame retardants. #### 5.4 Flame retardants determination Determine the flame retardants in the solution (5.3) by GC-MS (4.1). The test parameters by GC-MS are given in Annex A as an example. Run a blank to control contamination. When the flame retardants level is very low, it is necessary to increase the mass of the pieces in order to reach at least three times the detection limit. When the flame retardant level is beyond the linear detector response range of the equipment, it is necessary to dilute the specimen liquid properly. #### 6 Calculation Quantify the concentration of each flame retardant by using the calibration curve. The content of each flame retardant is expressed by the mass ratio of flame retardant to test specimen, in $\mu g/g$. Calculate the result by using Formula (1). $$X_i = \frac{(C_i - C_0) \times V}{m} \tag{1}$$ where - X_i is the content of the flame retardant, i, in the textile specimen, in $\mu g/g$; - C_i is the concentration of the flame retardant, i, in the specimen solution, in $\mu g/ml$; - C_0 is the concentration of the flame retardant, *i*, in the blank solution, in $\mu g/ml$; - *V* is the final volume of the specimen solution, in ml: - *m* is the mass of the test specimen, in g. #### ISO/FDIS 17881-1:2015(E) #### 7 Test report The test report shall include the following information: - a) a reference to this part of ISO 17881, i.e. ISO 17881-1:2015; - b) all details necessary for identification of the sample tested; - c) the content of each flame retardant; - d) any deviation from the procedure specified. # Annex A (informative) # **Test parameters by GC-MS** #### A.1 Instrument parameters As the instrumental equipment of the laboratories may vary, no generally applicable parameters can be provided for chromatographic analyses. The following parameters have been found successfully. a) Capillary column: VF-5ht, length 15 m, inside diameter 0,25 mm, film thickness 0,1 µm or equivalent; b) Temperature programme: 100 °C for 2 min, 100 °C to 310 °C (20 °C/min), 310 °C for 5 min; c) Injector temperature: 280 °C; d) Transfer line temperature: 300 °C; e) Carrier gas: Helium with a purity of no less than 99,999 % delivered at 1,5 ml/min; f) Ionization mode: g) Ionization energy: h) Detection mode: Selected ion monitor detection; i) Injector system: Splitless, split at 1 min; j) Injector volume: 1 µl. # A.2 Typical ions and detection limit Typical ions and detection limit for flame retardants are shown in Table A.1. Table A.1 — Typical ions and detection limit | No. | Flame retardant | Typical ions/amu | | Detection limit | |------|------------------------------------|------------------|---------------|-----------------| | INO. | | Target ion | Target ion | (μg/g) | | 1 | Monobromobiphenyl (MonoBB) | 152 | 234, 232, 152 | 5 | | 2 | Dibromobiphenyl (DiBB) | 152 | 312, 310, 152 | 5 | | 3 | Tribromobiphenyl (TriBB) | 230 | 392, 390, 230 | 5 | | 4 | Tetrabromobiphenyl (TetraBB) | 310 | 470, 310, 308 | 5 | | 5 | Pentabromo-1,1'-biphenyl (PentaBB) | 388 | 550, 390, 388 | 5 | | 6 | Hexabromobiphenyl (HexaBB) | 468 | 628, 468, 466 | 5 | | 7 | Heptabromo-1,1'-biphenyl (HeptaBB) | 546 | 705, 546, 544 | 10 | | 8 | Octabromobiphenyl (OctaBB) | 544 | 785, 546, 544 | 10 | | 9 | Nonabromobiphenyl (NonaBB) | 705 | 864, 705, 703 | 10 |