SLOVENSKI STANDARD SIST EN 60793-1-33:2018 01-januar-2018 Nadomešča: SIST EN 60793-1-33:2004 Optična vlakna - 1-33. del: Metode merjenja in preskusni postopki - Dovzetnost za napetostno korozijo (IEC 60793-1-33:2017) Optical fibres - Part 1-33: Measurement methods and test procedures - Stress corrosion susceptibility (IEC 60793-1-33:2017) Lichtwellenleiter - Teil 1-33: Messmethoden und Prüfverfahren - W Spannungskorrosionsempfindlichkeit (IEC 60793-1-33:2017) Fibres optiques - Partie 1-33: Méthodes de mesure et procédures d'essai - Résistance à la corrosion sous contrainte (IEC 60798-1-33:2017) 32de782-0e49-44d7-a56a-d7e32cc57ea9/sist-en-60793-1-33-2018 Ta slovenski standard je istoveten z: EN 60793-1-33:2017 ICS: 33.180.10 (Optična) vlakna in kabli Fibres and cables SIST EN 60793-1-33:2018 en SIST EN 60793-1-33:2018 # iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST EN 60793-1-33:2018</u> https://standards.iteh.ai/catalog/standards/sist/132de782-0e49-44d7-a56a-d7e32cc57ea9/sist-en-60793-1-33-2018 EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 60793-1-33 November 2017 ICS 33.180.10 Supersedes EN 60793-1-33:2002 ### **English Version** # Optical fibres - Part 1-33: Measurement methods and test procedures - Stress corrosion susceptibility (IEC 60793-1-33:2017) Fibres optiques - Partie 1-33: Méthodes de mesure et procédures d'essai - Résistance à la corrosion sous contrainte (IEC 60793-1-33:2017) Lichtwellenleiter - Teil 1-33: Messmethoden und Prüfverfahren - Spannungskorrosionsempfindlichkeit (IEC 60793-1-33:2017) This European Standard was approved by CENELEC on 2017-09-20. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. ### SIST EN 60793-1-33:2018 CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav, Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels EN 60793-1-33:2017 (E) # **European foreword** The text of document 86A/1803/FDIS, future edition 1 of IEC 60793-1-33:2017, prepared by IEC/SC 86A "Fibres and cables", of IEC/TC 86 "Fibre optics" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 60793-1-33:2017. The following dates are fixed: - latest date by which this document has (dop) 2018-06-20 to be implemented at national level by publication of an identical national standard or by endorsement - latest date by which the national standards conflicting with this document have to be withdrawn (dow) 2020-09-20 This document supersedes EN 60793-1-33:2002. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights. iTeh STANDARD PREVIEW Endorsement notice The text of the International Standard IEC 60793-1-33:2017 was approved by CENELEC as a European Standard without any modification. SIST EN 60793-1-33:2018 https://standards.iteh.ai/catalog/standards/sist/132de782-0e49-44d7-a56a-d7e32cc57ea9/sist-en-60793-1-33-2018 # IEC 60793-1-33 Edition 2.0 2017-08 # INTERNATIONAL STANDARD # NORME INTERNATIONALE Optical fibres - iTeh STANDARD PREVIEW Part 1-33: Measurement methods and test procedures – Stress corrosion susceptibility SIST EN 60793-1-33:2018 Fibres optiques https://standards.iteh.ai/catalog/standards/sist/132de782-0e49-44d7-a56a- Partie 1-33: Méthodes de mesures et procédures d'essai – Résistance à la corrosion sous contrainte INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE ICS 33.180.10 ISBN 978-2-8322-4736-5 Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé. # - 2 - IEC 60793-1-33:2017 © IEC 2017 # CONTENTS | FOF | KEWORI |) | 5 | | | |-----|-----------|--|----|--|--| | INT | RODUC | TION | 7 | | | | 1 | Scope. | | 8 | | | | 2 | Normat | ive references | 8 | | | | 3 | Terms | and definitions | 8 | | | | 4 | | ew of test methods | | | | | 5 | | nce test methods | | | | | 6 | | | | | | | | Apparatus | | | | | | 7 - | • | | | | | | | | eneralpecimen length | | | | | | | pecimen preparation and conditioning | | | | | 8 | | ure | | | | | 9 | | itions | | | | | | | | | | | | 10 | | | | | | | 11 | | cation information | | | | | Ann | ex A (no | eneralprmative) Dynamic n value, n _d , by axial tension eneral | 12 | | | | | 4.1 G | eneral (standards talk si) | 12 | | | | F | | pparatus (standards.iteh.ai) | | | | | | A.2.1 | General | | | | | | A.2.2 | Support of the speciment EN 60793-1-33:2018 | 13 | | | | | A.2.3 | Stressing application/catalog/standards/sist/132de782-0e49-44d7-a56a-d7e32cc57ea9/sist-en-60793-1-33-2018 Fracture force measurement | 14 | | | | | A.2.4 | | | | | | | A.2.5 | Strain rate control | | | | | , | A.2.6 | Stress rate characterization | | | | | F | | est sample | | | | | | A.3.1 | Sample size | | | | | _ | A.3.2 | Sample size (optional) | | | | | | | rocedure | | | | | F | | alculations | | | | | | A.5.1 | Fracture stress | | | | | | A.5.2 | Fracture stress at a given strain rate | | | | | | A.5.3 | Dynamic (tension) stress corrosion susceptibility parameter, n_d | | | | | | | esults | | | | | | | ormative) Dynamic <i>n</i> value, <i>n</i> _d , by two-point bending | | | | | | | eneral | | | | | Е | | pparatus | | | | | | B.2.1 | General | | | | | | B.2.2 | Stepper motor control | | | | | | B.2.3 | Stepper motor-driven movable platen | | | | | | B.2.4 | Stationary platen | | | | | | B.2.5 | Platen velocity | | | | | _ | B.2.6 | Fibre fracture detecting system | | | | | | | est sample | | | | | E | 3.4 P | rocedure | 20 | | | | B.5 | Calculations | 21 | |-----------|---|-----| | B.5.1 | Fracture stress | 21 | | B.5.2 | Dynamic (two-point bending) stress corrosion susceptibility parameter, n d | 21 | | B.5.3 | | | | Annex C (| normative) Static n value, n_s , by axial tension | | | C.1 | General | | | C.2 | Apparatus | | | C.2.1 | •• | | | C.2.2 | | | | C.2.3 | | | | C.2.4 | - | | | C.3 | Test sample | | | C.4 | Procedure | 24 | | C.5 | Calculations | 25 | | C.5.1 | Fracture stress | 25 | | C.5.2 | Static (tension) stress corrosion susceptibility parameter, n_S | 25 | | C.5.3 | Simple median | 25 | | C.6 | Results | 25 | | Annex D (| normative) Static n value, n_S , by two-point bending | | | D.1 | General iTeh STANDARD PREVIEW | 27 | | D.2 | Apparatus | 27 | | D.2.1 | | 27 | | D.2.2 | | 27 | | D.3 | Test sample://standards.iteh.ai/catalog/standards/sist/132de782-0e49-44d7-a56a- | 27 | | D.4 | Procedure | 27 | | D.5 | Calculations | 27 | | D.5.1 | Fracture stress | 27 | | D.5.2 | Static (two-point bending) stress corrosion susceptibility parameter, $n_{\rm S}$ | 28 | | D.6 | Results | 28 | | Annex E (| normative) Static n value, n_S , by uniform bending | 29 | | E.1 | General | 29 | | E.2 | Apparatus | 29 | | E.2.1 | General | 29 | | E.2.2 | Support of the sample | 29 | | E.2.3 | Stressing the fibre | 29 | | E.2.4 | Measuring time to fracture | 29 | | E.3 | Test sample | 29 | | E.4 | Procedure | 29 | | E.5 | Calculations | | | E.5.1 | Fracture stress | | | E.5.2 | Static (uniform bending) stress corrosion susceptibility parameter, n_{S} | 30 | | E.6 | Results | 30 | | | nformative) Considerations for dynamic stress corrosion susceptibility | 0.4 | | · | calculations | | | F.1 | Specimen size and sample size | | | F.1.1 | Specimen size | | | F.1.2 | Sample size | 31 | | F.2 | Numeric algorithm for calculation of dynamic stress corrosion susceptibility parameter, $n_{\sf d}$ | 32 | | |---|--|-----|--| | F.3 | Complete method to calculate fracture stress | 33 | | | | (informative) Considerations for static stress corrosion susceptibility | 0.5 | | | • | r calculations | | | | G.1
G.2 | Homologous method | | | | _ | Maximum likelihood estimate informative) Considerations on stress corrosion susceptibility parameter test | 35 | | | | informative) Considerations on stress corrosion susceptibility parameter test | 36 | | | H.1 | General | 36 | | | H.2 | Crack growth | 36 | | | H.3 | Types of stress corrosion susceptibility test methods | 37 | | | H.4 | Comparison of <i>n</i> value obtained with different methods | 37 | | | H.5 | Conclusion | | | | Bibliograp | hy | 40 | | | | | | | | • | I – Schematic of translation test apparatus | | | | _ | 2 – Schematic of rotational test apparatus | | | | Ū | B – Schematic of rotational test apparatus with load cell | | | | Figure A.4 | 4 – Representation of dynamic fatigue graph 1 – Schematic of two-point bending unit | 18 | | | | | | | | Figure B.2 | 2 – Schematic of possi <mark>ble dynamic fati</mark> gue (two-point bending) apparatus | 23 | | | Figure B.3 | B – Schematic of dynamic fatigue data | 23 | | | Figure C. | 1 — Schematic of possible static fatigue (tension) apparatus | 26 | | | Figure D. | 1 – Possible test equipment schematic 60793-1-33-2018 | 28 | | | Figure E. | 1 – Schematic of possible static fatigue (uniform bending) apparatus | 30 | | | to-fracture | 1 – COST 218 round robin results of fracture strength versus "effective" time-
e for dynamic and static axial tension, dynamic and static two-point bending
mandrel test methods | 38 | | | Figure H.2 – COST 218 round robin results of fracture strength versus "effective" time-to-fracture for dynamic and static axial tension, dynamic and static two-point bending and static mandrel test methods | | | | | Table F.1 | – 95 % confidence interval for $n_{\sf d}$ | 32 | | ### INTERNATIONAL ELECTROTECHNICAL COMMISSION # **OPTICAL FIBRES -** # Part 1-33: Measurement methods and test procedures – Stress corrosion susceptibility # **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. Standards.1121.21 - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. https://standards.itch.ai/catalog/standards/sist/132de782-0e49-44d7-a56a- - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 60793-1-33 has been prepared by subcommittee 86A: Fibres and cables, of IEC technical committee 86: Fibre optics. This second edition cancels and replaces the first edition published in 2001. It constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: - a) removal of RTM; - b) changes to scope. IEC 60793-1-33:2017 © IEC 2017 The text of this International Standard is based on the following documents: | FDIS | Report on voting | |---------------|------------------| | 86A/1803/FDIS | 86A/1824/RVD | **-** 6 **-** Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table. This document has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all parts of the IEC 60793 series, published under the general title *Optical fibres*, can be found on the IEC website. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be - reconfirmed, - withdrawn, - replaced by a revised edition, or - amended. # iTeh STANDARD PREVIEW IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. d7e32cc57ea9/sist-en-60793-1-33-2018 IEC 60793-1-33:2017 © IEC 2017 **-7-** # INTRODUCTION Annexes A, B, C, D, and E form an integral part of this document. Annexes F, G, and H are for information only. # iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST EN 60793-1-33:2018</u> https://standards.iteh.ai/catalog/standards/sist/132de782-0e49-44d7-a56a-d7e32cc57ea9/sist-en-60793-1-33-2018 ### - 8 - # **OPTICAL FIBRES -** # Part 1-33: Measurement methods and test procedures -Stress corrosion susceptibility # Scope This part of IEC 60793 contains descriptions of the five main test methods for the determination of stress corrosion susceptibility parameters. The object of this document is to establish uniform requirements for the mechanical characteristic of stress corrosion susceptibility for silica-based fibres. Dynamic fatigue and static fatigue tests are used to determine the (dynamic) $n_{\rm d}$ value and (static) n_s value of stress corrosion susceptibility parameters. Currently, only the $n_{\rm d}$ -value is assessed against specification. Measured values greater than 18 per this procedure reflect the $n_{\rm d}$ -value of silica, which is approximately 20. Higher values will not translate to demonstrable enhanced fatigue resistance. Silica fibre mechanical tests determine the fracture stress and fatigue properties under conditions that model the practical applications as closely as possible. The following test methods are used for determining stress corrosion susceptibility: - A: Dynamic n_d value by axiastension; ards.iteh.ai) - B: Dynamic n_d value by two-point bending; - C: Static n_s value by axial tension, ENGLY EN - D: Static n_s value by two-point bending ist-en-60793-1-33-2018 - E: Static n_s value by uniform bending. These methods are appropriate for category A1, A2 and A3 multimode, class B single-mode fibres and class C intraconnecting single-mode fibres. These tests provide values of the stress corrosion parameter, n, that can be used for reliability calculations according to IEC TR 62048 [18]1. Information common to all methods is contained in Clauses 1 to 10, and information pertaining to each individual test method appears in Annexes A, B, C, D, and E. Annexes F and G offer considerations for dynamic and static stress corrosion susceptibility parameter calculations, respectively; Annex H offers considerations on the different stress corrosion susceptibility parameter test methods. #### Normative references 2 There are no normative references in this document. ## Terms and definitions No terms and definitions are listed in this document. ¹ Numbers in square brackets refer to the Bibliography. IEC 60793-1-33:2017 © IEC 2017 _ 9 _ ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp ### 4 Overview of test methods The following test methods are available: - Dynamic n_d value by axial tension, see Annex A. - Dynamic n_d value by two-point bending, see Annex B. - Static n_s value by axial tension, see Annex C. - Static n_s value by two-point bending, see Annex D. - Static n_s value by uniform bending, see Annex E. ## 5 Reference test methods At the time of this revision, no agreement could be reached in maintaining method A only as RTM in using it with some fibres equipped with modern coatings. Method A or B should be used to resolve disputes because they may be completed in a duration practical for dispute resolution. **Teh STANDARD PREVIEW** # 6 Apparatus (standards.iteh.ai) See Annexes A, B, C, D, and E <u>for Each 70f-the 2lay</u>out drawings and other equipment requirements for each of the methods atalog/standards/sist/132de782-0e49-44d7-a56a- d7e32cc57ea9/sist-en-60793-1-33-2018 # 7 Sampling and specimens ### 7.1 General These measurements are statistical in nature. A number of specimens or samples from a common population are tested, each under several conditions. Failure stress or time statistics for various sampling groups are used to calculate the stress corrosion susceptibility parameters. ### 7.2 Specimen length Specimen length is contingent on the test procedure used. See Annexes A, B, C, D, and E for the length required for each test method. For tensile tests, the length ranges from 0,5 m to at most 5 m. For two-point bending tests, the actual length tested is less than 1 cm and for uniform bending tests, about 1 m. # 7.3 Specimen preparation and conditioning All of the test methods shall be performed under constant environmental conditions. Unless otherwise specified in the detail specification, the nominal temperature shall be in the range of 20 °C to 23 °C with a tolerance of ± 2 °C for the duration of the test. Unless otherwise specified in the detail specification, the nominal relative humidity (RH) shall be in the range of 40 % to 60 % with a tolerance of ± 5 % for the duration of the test. Unless otherwise specified, all specimens shall be pre-conditioned in the test environment for a minimum period of 12 h.