INTERNATIONAL STANDARD

Second edition 2009-09-15

AMENDMENT 1 2013-07-01

Plastics piping systems — Glassreinforced thermosetting plastics (GRP) pipes and fittings — Methods for regression analysis and their use — Amendment 1

Systèmes de canalisation en matières plastiques — Tubes et raccords plastiques thermodurcissables renforcés de verre (PRV) — Méthodes pour une analyse de régression et leurs utilisations — Amendement 1 (standards.teel.al)

ISO 10928:2009/Amd 1:2013 https://standards.iteh.ai/catalog/standards/sist/af64a4aa-4ac0-4313-9f67-0faae2a02ee9/iso-10928-2009-amd-1-2013

Reference number ISO 10928:2009/Amd.1:2013(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10928:2009/Amd 1:2013</u> https://standards.iteh.ai/catalog/standards/sist/af64a4aa-4ac0-4313-9f67-0faae2a02ee9/iso-10928-2009-amd-1-2013

COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. <u>www.iso.org/patents</u>

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

The committee responsible for this document is ISO/TC 138, *Plastics pipes, fittings and valves for the transport of fluids*, Subcommittee SC 6, *Reinforced plastics pipes and fittings for all applications*.

(standards.iteh.ai)

<u>ISO 10928:2009/Amd 1:2013</u> https://standards.iteh.ai/catalog/standards/sist/af64a4aa-4ac0-4313-9f67-0faae2a02ee9/iso-10928-2009-amd-1-2013

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10928:2009/Amd 1:2013</u> https://standards.iteh.ai/catalog/standards/sist/af64a4aa-4ac0-4313-9f67-0faae2a02ee9/iso-10928-2009-amd-1-2013

Plastics piping systems — Glass-reinforced thermosetting plastics (GRP) pipes and fittings — Methods for regression analysis and their use — Amendment 1

Page 49, Annex D

Replace Annex D with the following:

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10928:2009/Amd 1:2013</u> https://standards.iteh.ai/catalog/standards/sist/af64a4aa-4ac0-4313-9f67-0faae2a02ee9/iso-10928-2009-amd-1-2013

Annex D

(informative)

Calculation of Lower Confidence and Lower Prediction Limits for Method A

D.1 Introduction

The calculation of confidence limits is not required by any of the ISO or CEN test methods or referring standards. However, the calculation of lower confidence limit (*LCL*) and lower prediction limit (*LPL*) is required by other standards (ASTM for example) using the same basic covariant analysis procedures of test data collected by similar test methods.

D.2 Calculation of Quantities and Variances

Calculate the quantity *B* using Equation (D.1):

$$B = -D \times X(1+E)$$
(D.1)
iTeh STANDARD PREVIEW
Calculate the variance A of α using Equation (D.2):
$$A = D \left[X^{2}(1+E) + Q_{xy} / b \right]$$
(D.2)

$$\frac{ISO 10928:2009/Amd 1:2013}{Calculate the variance \sigma_n^2 of the fitted line at xL using Equation (D.3)}$$

$$\sigma_n^2 = A + Bx_L + Cx_L^2 \tag{D.3}$$

Calculate the error variance σ_{ϵ}^2 using Equation (D.4):

$$\sigma_{\varepsilon}^{2} = 2\Gamma \sigma_{\delta}^{2} \tag{D.4}$$

Calculate the total variance σ_y^2 for future values of y_L at x_L using Equation (D.5):

$$\sigma_{\rm y}^2 = \sigma_{\rm n}^2 + \sigma_{\rm \epsilon}^2 \tag{D.5}$$

Calculate the estimated standard deviation $\sigma_{\rm V}$ for $y_{\rm L}$ using Equation (D.6):

$$\sigma_{\rm y} = (\sigma_{\rm n}^2 + \sigma_{\rm \epsilon}^2)^{0.5} \tag{D.6}$$

D.3 Calculation of Confidence Intervals

Calculate the predicted value y_L for y at x_L using Equation (D.7):

$$y_{\rm L} = a + b x_{\rm L} \tag{D.7}$$

where *a* and *b* are as calculated by equations (D.8) and (D.9).

Calculate the lower 95% prediction interval $y_{L0,95}$ predicted for y_L :

$$y_{\rm L0.95} = y_{\rm L} - t_{\rm v} \sigma_{\rm v} \tag{D.8}$$

where t_v is the value from Table 2.

Calculate the corresponding lower 95% prediction limit for *x*_L using Equation (D.9):

$$x_{\rm L0,95} = 10^{y_{\rm L0,95}} \tag{D.9}$$

Setting $\sigma_y^2 = \sigma_n^2$ in Equation (D.5) will calculate a confidence interval for the regression line rather than a prediction interval for a future observation.

D.4 Validation of Procedures by a Sample Calculation

The data given in Table 3, analysed in 3.2.6 and summarized in Table 4 are extended for the sample calculation of confidence intervals.

Quantities and variances:

$$B = -1,469 \times 10^{-5}$$

A = 4,667 3 × 10⁻⁵

at 50 years

 $\sigma_n^2 = 4,0466 \times 10^{-5}$

 $\sigma_{\epsilon}^2 = 1,1601 \times 10^{-4}$

ISO 10928:2009/Amd 1:2013

iTeh STANDARD PREVIEW

(standards.iteh.ai)

https://standards.iteh.ai/catalog/standards/sist/af64a4aa-4ac0-4313-9f67-

The estimated values for LCL and LPD are given in Table D.1 (see Table 4).

Time	Vm	LCL	LPL
h			
0,1	45,76	43,86	42,83
1	42,39	41,05	39,93
10	39,28	38,41	37,16
100	36,39	35,91	34,53
1000	33,71	33,41	32,03
10 000	31,23	30,79	29,63
100 000	28,94	28,26	27,36
438 000	27,55	26,74	25,98

Table D.1 — Es	stimated values,	$V_{\rm m}$, LCL	and LPL for V
----------------	------------------	-------------------	---------------

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10928:2009/Amd 1:2013</u> https://standards.iteh.ai/catalog/standards/sist/af64a4aa-4ac0-4313-9f67-0faae2a02ee9/iso-10928-2009-amd-1-2013

ICS 23.040.20; 23.040.45

Price based on 3 pages