

SLOVENSKI STANDARD SIST EN IEC 60255-187-1:2021

01-november-2021

Merilni releji in zaščitna oprema - 187-1. del: Funkcijske zahteve za diferenčno zaščito - Omejena in neomejena diferenčna zaščita motorjev, generatorjev in transformatorjev

Measuring relays and protection equipment - Part 187-1: Functional requirements for differential protection - Restrained and unrestrained differential protection of motors, generators and transformers

Messrelais und Schutzeinrichtungen - Teil 187-1: Funktionsanforderungen für den stabilisierten und nicht stabilisierten Differentialschutz von Motoren, Generatoren und Transformatoren

https://standards.iteh.ai/catalog/standards/sist/13a8cc62-088c-40c7-bfb7-383c8fb6e7f5/sist-

Relais de mesure et dispositifs de protection - Partie 187-1: Exigences fonctionnelles pour la protection différentielle - Protection différentielle avec et sans caractéristique de retenue des moteurs, générateurs et transformateurs

Ta slovenski standard je istoveten z: EN IEC 60255-187-1:2021

ICS:

29.120.70 Releji

Relays

en

SIST EN IEC 60255-187-1:2021

SIST EN IEC 60255-187-1:2021

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN IEC 60255-187-1:2021</u>

https://standards.iteh.ai/catalog/standards/sist/13a8cc62-088c-40c7-bfb7-383c8fb6e7f5/sisten-iec-60255-187-1-2021

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN IEC 60255-187-1

September 2021

ICS 29.120.70

English Version

Measuring relays and protection equipment - Part 187-1: Functional requirements for differential protection - Restrained and unrestrained differential protection of motors, generators and transformers (IEC 60255-187-1:2021)

Relais de mesure et dispositifs de protection - Partie 187-1: Exigences fonctionnelles pour la protection différentielle -Protection différentielle avec et sans caractéristique de retenue des moteurs, générateurs et transformateurs (IEC 60255-187-1:2021) Messrelais und Schutzeinrichtungen - Teil 187-1: Funktionsanforderungen für den stabilisierten und nicht stabilisierten Differentialschutz von Motoren, Generatoren und Transformatoren (IEC 60255-187-1:2021)

This European Standard was approved by CENELEC on 2021-09-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2021 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

EN IEC 60255-187-1:2021 (E)

European foreword

The text of document 95/465/FDIS, future edition 1 of IEC 60255-187-1, prepared by IEC/TC 95 "Measuring relays and protection equipment" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 60255-187-1:2021.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2022-06-01 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2024-09-01 document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website.

Endorsement notice iTeh STANDARD PREVIEW

The text of the International Standard IEC 60255-187-1:2021 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 61850 (series) NOTE Harmonized as EN 61850 (series)

IEC 61850-7-4:2010 NOTE Harmonized as EN 61850-7-4:2010 (not modified)

IEC 61850-9-2 NOTE Harmonized as EN 61850-9-2

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>www.cenelec.eu</u>.

Publication	Year	Title	<u>EN/HD</u>	Year
IEC 60255-1	-	Measuring relays and protection equip - Part 1: Common requirements	mentEN 60255-1	-
IEC 61850-8-	¹ iTeh	Communication networks and system power utility automation - Part Specific communication service map (SCSM) - Mappings to MMS (ISO 95 and ISO 9506-2) and to ISO/IEC 8802	ns forEN 61850-8-1 8–1: oping 506-1 -3	-
IEC 61869-2	-	Instrument transformers - Part 2: Addit requirements for current transformers	tionalEN 61869-2	-
IEC 61869-9	dards.iteh.ai/ca	Instrument transformers - Part 9: D interface for instrument transformers	DigitalEN IEC 61869-9	e7 - f5/sist

SIST EN IEC 60255-187-1:2021

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN IEC 60255-187-1:2021</u>

https://standards.iteh.ai/catalog/standards/sist/13a8cc62-088c-40c7-bfb7-383c8fb6e7f5/sisten-iec-60255-187-1-2021

IEC 60255-187-1

Edition 1.0 2021-07

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Measuring relays and protection equipment – **CAREVIE** Part 187-1: Functional requirements for differential protection – Restrained and unrestrained differential protection of motors, generators and transformers

Relais de mesure et dispositifs de protection – <u>12021</u> Partie 187-1: Exigences fonctionnelles pour la protection différentielle – ^{5/siste} Protection différentielle avec et sans caractéristique de retenue des moteurs, générateurs et transformateurs

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.120.70

ISBN 978-2-8322-1003-9

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

– 2 – IEC 60255-187-1:2021 © IEC 2021

CONTENTS

FO	REWO	RD	.11
1	Scop	e	. 13
2	Norm	ative references	. 14
3	Term	s and definitions	. 14
4	Spec	ification of the function	. 18
	4 1	General	18
	4.2	Input energizing quantities/energizing quantities	.19
	4.2.1	General	.19
	4.2.2	Connections	.19
	4.3	Binary input signals	. 19
	4.4	Functional logic	. 22
	4.4.1	General	.22
	4.4.2	Phase biased differential protection	.22
	4.4.3	Biased restricted earth fault protection	.24
	4.4.4	Compensation of energizing quantities	.25
	4.4.5	Additional restraint or blocking methods	.26
4	4.5	Binary output signals	. 27
	4.5.1	General	.27
	4.5.2	Start (pick-up) signals	.27
	4.5.3	Operate (trip) signals	. 27
	4.5.4	Other output signals	. 27
4	4.6	Additional influencing functions and conditions	.27
	4.6.1	General	.27
	4.6.2	anda Operation during CT saturation	.28
	4.6.3	Switch onto fault en-iec-60255-187-1-2021	.28
	4.6.4	Energizing quantity failure (CT supervision)	.28
	4.6.5	Off-nominal frequency operation	.28
	4.6.6	Geomagnetically induced currents (GIC)	.28
5	Perfo	rmance specification	. 29
!	5.1	General	.29
ł	5.2	Effective and operating ranges	.29
ł	5.3	Steady state accuracy tests in the effective range	.29
	5.3.1	General	.29
	5.3.2	Test related to the declared thermal withstand current	.30
	5.3.3	Basic characteristic accuracy	. 30
	5.3.4	Ratio compensation accuracy	. 30
	5.3.5	Phase (vector) compensation validity	.31
	5.3.6	Zero sequence compensation validity	.31
	5.3.7	Harmonic restraint basic accuracy	.31
	5.3.8	Basic accuracy of time delay settings	.31
	5.3.9	Disengage time	. 31
!	5.4	Dynamic performance in operating range	. 32
	5.4.1	General	. 32
	5.4.2	Typical operate time	. 32
	5.4.3	Relay stability for external faults	. 32
	5.4.4	Relay behaviour for internal fault preceded by an external fault	.33
!	5.5	Stability during magnetizing inrush conditions	. 33

IEC 60255-187-1:2021 © IEC 2021 - 3 -

	5.6	Stability during overexcitation conditions	33
	5.7	Presence of harmonics on load	33
	5.8	Performance during saturation of current transformers	33
	5.9	Behaviour of differential protection with digital interface for the energizing	
~		quantities	34
6	Funct	lional tests	34
	6.1	General	34
	6.2	Test related to the declared thermal withstand current	35
	6.3	Steady state accuracy tests in effective range	35
	6.3.1	General	35
	6.3.2	Basic characteristic accuracy	37
	6.3.3	Ratio (magnitude) compensation accuracy	44
	6.3.4	Phase (vector) compensation validity	45
	6.3.5	Zero sequence compensation validity	47
	6.3.6	Harmonic restraint basic accuracy test under steady state conditions at nominal frequency	50
	6.3.7	Accuracy related to time delay setting	52
	6.3.8	Determination and reporting of the disengage time	54
	6.4	Dynamic performance tests	55
	6.4.1	General	55
	6.4.2	Operate time for double infeed network model (restrained operation)	57
	6.4.3	Operate time for double infeed network model (unrestrained operation)	68
	6.4.4	Operate time for radial single infeed network model (restrained operation)	73
	6.4.5	Operate time for radial single infeed network model (unrestrained operation)SIST.EN.IEC.60255-187-1-2021	86
	6.4.6	anda Reporting of typical operate time	. 89
	6.4.7	Stability for external faults 60255-187-1-2021	95
	6.5	Relay behaviour for internal fault preceded by an external fault	112
	6.5.1	General	112
	6.5.2	Application specific considerations: transformer differential	112
	6.5.3	Application specific considerations: biased restricted earth fault	115
	6.5.4	Application specific considerations: generator differential	119
	6.5.5	Reporting	122
	6.6	Stability during inrush conditions	123
	6.6.1	General	123
	6.6.2	Application specific considerations: transformer differential	123
	6.7	Stability during overexcitation conditions	128
	6.7.1	General	128
	6.7.2	Application specific considerations: transformer differential	128
	6.8	Performance with load harmonics	133
	6.8.1	General	133
	6.8.2	Application specific considerations: transformer differential	133
	6.8.3	Application specific considerations: generator or motor differential	137
	6.8.4	Application specific considerations: biased restricted earth fault	140
	6.8.5	Reporting	142
7	Docu	mentation requirements	143
	7.1	Type test report	143
	7.2	Other user documentation	143

Annex A (compensa	informative) Examples of phase (vector) compensation and zero sequence tion schemes	144
A.1	General	144
A.2	$Y \rightarrow d$ conversion	145
A.2.1	Current conversion	145
A.2.2	Three-phase fault at Y (star/wye) side	146
A.2.3	Phase-phase fault at Y (star/wye) side	147
A.2.4	Single-phase fault at Y (star/wye) side	147
A.2.5	Three-phase fault at delta side	148
A.2.6	Phase-phase fault at delta side	149
A.2.7	Single-phase fault at delta side	149
A.2.8	Ratio between start currents under different fault types	152
A.3	$d \rightarrow Y$ conversion	152
A.3.1	Current conversion	152
A.3.2	Three-phase fault at Y (star/wye) side	153
A.3.3	Phase-phase fault at Y (star/wye) side	153
A.3.4	Single-phase fault at Y (star/wye) side	153
A.3.5	Three-phase fault at delta side	154
A.3.6	Phase-phase fault at delta side	154
A.3.7	Single-phase fault at delta side	155
A.3.8	Ratio between start currents under different fault types	155
Annex B (normative) Calculation of mean, median and mode	156
B.1	Mean (standards.iteh.ai)	
B.2	Median	
B.3	Mode SIST EN JEC 60355 187 1/2021	
ht B :4//st	Example of ai/catalog/standards/sist/13a8oc/62.088oc40o7.bfb7-383c8fb6e7f5	(
Annex C (normative) CT requirements 0.60255.187.1.2021	157
C 1	General	157
C 2	Transformer differential protection	161
C 2 1	General	161
C 2 2	Fault 1	161
C 2 3	Fault 2	162
C 2 4	Fault 3	162
C.3	Transformer restricted earth fault protection	163
C.3.1	General	163
C.3.2	Fault 1	163
C.3.3	Fault 2	164
C.3.4	Fault 3	164
C.4	Generator differential protection	165
C.4.1	General	165
C.4.2	Fault 2	165
C.4.3	Criteria and additional conditions	166
C.5	Motor differential protection	166
C.5.1	General	166
C.5.2	Fault 1	166
C.5.3	Criteria and additional conditions	166
C.5.4	Start of motor, security case	167
C.5.5	Criteria and additional conditions	167
C.6	Reporting	167

IEC 60255-187-1:2021 © IEC 2021 - 5 -

Annex D(relays	(informative) CT saturation and influence on the performance of differential	168
Annex E (informative) Guidance on dimensioning of CTs for transformer differential protection		
E.1	General	173
E.2	Example 1	174
E.2.1	General	174
E.2.2	Verification of CT1 – Internal fault	175
E.2.3	Verification of CT1 – External fault	175
E.2.4	Verification of CT2	176
E.3	Example 2	177
E.3.1	General	177
E.3.2	2 Dimensioning of CT1	178
E.3.3	Dimensioning of CT2	179
Annex F (requireme	Informative) Examples of test procedures to determine CT sizing ents for differential protection	181
F.1	General	181
F.2	Test data	183
F.2.1	General	183
F.2.2	protection	183
F.2.3	Network model for CT requirement tests for the transformer restricted earth fault protection	187
F.3	CT data and CT models	189
F.4	Test summary	197
Annex G	(normative) Ramping methods for testing basic characteristic accuracy	199
G.1	General	199
G.2	Pre-fault condition.	199
G.3	Pseudo-continuous ramp	199
G.4	Ramp of shots	201
Annex H (informative) Example of COMTRADE file for an evolving fault test case	203
Annex I (r	normative) Definition of fault inception angle	204
Bibliograp	bhy	205
Figure 1 -	- Explanatory diagram for start time, operate time and disengage time	17
Figure 2 -	- Simplified biased differential functional block diagram	18
Figure 3 -	- Primary current reference direction	21
Figure 4 -	- Typical restrained element (biased) characteristic	23
Figure 5 -	- Typical unrestrained element characteristic	23
Figure 6 - elements.	- Example of combined characteristic using restrained and unrestrained	24
Figure 7 -	- Basic error of the operating characteristic	30
Figure 8 -	- Example of an operating characteristic in the <i>I</i> DIFF ^{/I} REST plane with a	
tolerance	band	37
Figure 9 -	- Test cases for differential characteristic basic accuracy	39
Figure 10	- Example of a differential characteristic with test lines "a" to "h"	40
Figure 11 – Machine differential protection40		
Figure 12	- Test sequence for basic characteristic accuracy	42

Figure 13 – Machine restricted earth fault protection	44
Figure 14 – Example for documenting the test results for differential relay characteristic	45
Figure 15 – Ratio (magnitude) compensation accuracy test	46
Figure 16 – Secondary three-phase and double-phase injection for Winding 1 (example)	47
Figure 17 – Secondary single-phase and three-phase injections for Winding 1 (example)	49
Figure 18 – Zero sequence current injection on the Y side of the transformer	50
Figure 19 – Zero sequence current injection on the delta side of the transformer	50
Figure 20 – Example of a rated frequency harmonic restraint characteristic with visualization of test lines	53
Figure 21 – Sequence of events for testing the disengage time	55
Figure 22 – Double infeed network model for operate time tests	58
Figure 23 – Test sequence for double infeed network model – Restrained operation (transformer)	62
Figure 24 – Double infeed network model for operate time tests	63
Figure 25 – Test sequence for double infeed network model – Restrained operation (REF)	66
Figure 26 – Double infeed network model for operate time tests	67
Figure 27 – Test sequence for double infeed network model – Restrained operation (generator)	70
Figure 28 – Test sequence for double infeed network model – Unrestrained operation (transformer)	73
Figure 29 – Single infeed network model for operate time tests	74
Figure 30 – Test sequence radial single infeed network model – Restrained operation	/sist- 78
Figure 31 – Single infeed network model for operate time tests	79
Figure 32 – Test sequence for radial single infeed network – Restrained operation (generator)	82
Figure 33 – Single infeed network model for operate time tests	83
Figure 34 – Test sequence for radial single infeed network – Restrained operation (motor)	86
Figure 35 – Test sequence for radial single infeed network – Unrestrained operation	89
Figure 36 – Example of distribution of the operate time for one application	93
Figure $37 - Operate$ time as a function of the off-nominal frequency values (effective range is the specified range of ± 10 % of nominal frequency)	95
Figure 38 – Operate time as a function of the off-nominal frequency values (accuracy range beyond the specified range of ± 10 % of nominal frequency	96
Figure 39 – Double infeed network model for stability tests	97
Figure 40 – Sequence of fault injection for stability due to external faults (transformer)	100
Figure 41 – Double infeed network model for stability tests	101
Figure 42 – Sequence of fault injection for stability due to external faults (REF)	104
Figure 43 – Double infeed network model for stability tests	105
Figure 44 – Sequence of fault injection for stability due to external faults (generator)	108
Figure 45 – Double infeed network model for stability tests	109
Figure 46 – Sequence of fault injection for stability due to external faults (motor)	112

IEC 60255-187-1:2021 © IEC 2021 - 7 -

Figure 47 – Double infeed network model for internal fault preceded by an external fault17	12
Figure 48 – Double infeed network model for internal fault preceded by an external fault test	16
Figure 49 – Double infeed network model for internal fault preceded by an external fault test	19
Figure 50 – Power transformer inrush current waveform	24
Figure 51 – Comparison of waveforms	25
Figure 52 – Connection for the relay when current is injected from Y winding12	26
Figure 53 – Connection for the relay when current is injected from delta winding	27
Figure 54 – Power transformer overexcitation current waveform injected from Y winding	29
Figure 55 – Overexcitation current waveform injected from delta winding12	29
Figure 56 – Comparison of the waveforms injected from Y winding	30
Figure 57 – Comparison of the waveforms injected from delta winding13	31
Figure 58 – Three-phase overexcitation current waveform injected from Y winding	32
Figure 59 – Three-phase overexcitation current waveform injected from delta winding13	33
Figure 60 – Test with superimposed harmonics on load – Transformer protection	33
Figure 61 – Three-phase load current waveform on the Y side of the transformer with superimposed harmonics	37
Figure 62 – Three-phase load current waveforms on the delta side of the YNd1 transformer with superimposed harmonics	37
Figure 63 – Test with superimposed harmonics on load	38
Figure 64 – Test with superimposed harmonics on load – Restricted earth fault protection .14	40
Figure A.1 – Example of a transformer	44
Figure A.2 – Current vectors	45
Figure A.3 – Three-phase injection at Y (star/wye) side14	47
Figure A.4 – Phase-phase injection at Y (star/wye) side	47
Figure A.5 – Single-phase injection at Y (star/wye) side14	48
Figure A.6 – Three-phase injection at delta side14	49
Figure A.7 – Phase-phase injection at delta side14	49
Figure A.8 – Internal single-phase fault at delta side with neutral grounding transformer in the system	50
Figure A.9 – Single-phase injection at delta side18	50
Figure A.10 – External single-phase fault at delta side with neutral grounding transformer inside protected zone	51
Figure C.1 – Fault positions to be considered for specifying the CT requirements	60
Figure C.2 – Fault positions to be considered for transformer differential protection	61
Figure C.3 – Fault positions to be considered for the restricted earth fault protection	63
Figure C.4 – External fault position to be considered for the generator differential protection	65
Figure C.5 – Internal fault position to be considered for the motor differential protection 16	66
Figure D.1 – Fault positions to be considered for specifying the CT requirements	70
Figure D.2 – Additional fault position to be considered in case of summation of currents 17	70
Figure E.1 – Transformer differential relay example 117	74
Figure E.2 – Transformer differential relay example 217	77
Figure F.1 – Network models and fault positions for transformer differential protection18	84

– 8 – IEC 60255-187-1:2021 © IEC 2021

Figure F.2 – Network models and fault positions for transformer restricted earth fault	107
Figure E 3 – Excitation characteristic for the high-remanence basic CT	101
Figure F 4 – Magnetization curve for the high-remanence type basic CT	193
Figure F 5 – Secondary current at the limit of saturation caused by the AC component	100
with no remanent flux in the CT	194
Figure F.6 – Secondary current in case of maximum DC offset	194
Figure F.7 – Excitation characteristics for non-remanence and high-remanence type basic CTs	196
Figure F.8 – Magnetization curve for non-remanence type basic CTs	197
Figure G.1 – Secondary injected currents for the simulation of a through load of 30 %	200
Figure G.2 – Pseudo-continuous ramp in the restraining current – Differential current plane in the time domain	201
Figure G.3 – Ramp of shots showing differential step change and the time step	202
Figure G.4 – Ramp of shots with binary search algorithm	202
Figure I.1 – Graphical definition of fault inception angle	204
Table 1 – Example of effective and operating ranges of differential protection	29
Table 2 – Frequencies for steady state accuracy tests when the frequency effective range is equal to ± 5 % of nominal frequency	36
Table 3 – Frequencies for steady state accuracy tests when the frequency effective range is larger than ± 5 % of nominal frequency	36
Table 4 – Example frequencies for steady state accuracy tests when the frequency effective range is narrower than ±5 % of nominal frequency	36
Table 5 – Test points for differential characteristic basic accuracy	
Table 6 – Test lines on the differential characteristic (Figure 10)	39
Table 7 – Basic characteristic accuracy	43
Table 8 – Example of start ratios resulting from phase (vector) compensation	47
Table 9 – Example of start ratios resulting from zero sequence compensation	50
Table 10 – Test points for rated frequency harmonic restraint	51
Table 11 – Reporting example of test results for harmonic restraint basic accuracy test	52
Table 12 – Results of time delay tests	53
Table 13 – Reported time delay	53
Table 14 – Results of disengage time for all the tests	55
Table 15 – Frequencies for dynamic performance tests when the frequency operating range is equal to ± 10 % of nominal frequency	55
Table 16 – Frequencies for dynamic performance tests when the frequency operating range is wider than ± 10 % of nominal frequency	55
Table 17 – Example frequencies for dynamic performance tests when the frequency operating range is narrower than ±10 % of nominal frequency	56
Table 18 – Double infeed network model	58
Table 19 – Source impedances for double infeed network model – Restrained operation (e.g. 50 Hz ± 10 % operating range)	59
Table 20 – Double infeed network model	62
Table 21 – Source impedances for double infeed network model – Restrained	
operation (e.g. 50 Hz ± 10 % operating range)	63
Table 22 – Double infeed network model	66

IEC 60255-187-1:2021 © IEC 2021 - 9 -

Table 23 – Source impedances for double infeed network model – Restrained operation (e.g. 50 Hz ± 10 % operating range)	67
Table 24 – Source impedances for double infeed network model – Unrestrained operation (e.g. 60 Hz ± 10 % operating range)	70
Table 25 – Single infeed network model	74
Table 26 – Source impedances for radial single infeed network model – Restrained operation (e.g. 50 Hz ± 10 % operating range)	74
Table 27 – Single infeed network model	78
Table 28 – Source impedances for radial single infeed network model – Restrainedoperation (e.g. 50 Hz ± 10 % operating range)	79
Table 29 – Single infeed network model	82
Table 30 – Source impedances for radial single infeed network model – Restrainedoperation (e.g. 50 Hz ± 10 % operating range)	83
Table 31 – Source impedances for radial single infeed network model – Unrestrained operation (e.g. 60 Hz ± 10 % operating range)	86
Table 32 – Fault statistics for typical operate time of transformer protection (nominal frequency only)	89
Table 33 – Fault statistics for typical operate time of biased restricted earth fault protection (nominal frequency only)	90
Table 34 – Fault statistics for typical operate time of generator protection (nominal frequency only)	90
Table 35 – Fault statistics for typical operate time of motor protection (nominal frequency only)	90
Table 36 – Operate time classes	91
Table 37 – Corresponding operate time classes	91
Table 38 – Number of operate times and percentage	92
Table 39 – Example of typical operate time at nominal frequency (mode, median, mean)	93
Table 40 – Examples of operate times (50 Hz nominal, CT configuration 500 A/1 A and1 000 A/1 A, power transformer protection)	94
Table 41 – Double infeed network model	96
Table 42 – Source impedances for double infeed network model stability tests (e.g.50 Hz ± 10 % operating range)	97
Table 43 – Double infeed network model	100
Table 44 – Source impedances for double infeed network model stability tests (e.g. 50 Hz ± 10 % operating range)	101
Table 45 – Double infeed network model	104
Table 46 – Source impedances for double infeed network model stability tests (e.g. 50 Hz ± 10 % operating range)	105
Table 47 – Double infeed network model	108
Table 48 – Source impedances for double infeed network model stability tests (e.g. 50 Hz ± 10 % operating range)	109
Table 49 – Double infeed network model	113
Table 50 – Source impedances, fault resistances and pre-fault conditions for internal fault preceded by an external fault (e.g. for 50 Hz power system frequency)	113
Table 51 – Double infeed network model	116
Table 52 – Source impedances, fault resistances and pre-fault conditions for internal fault preceded by an external fault tests (e.g. for 50 Hz power system frequency)	117
Table 53 – Double infeed network model	120