
Reference number
ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015

TECHNICAL
SPECIFICATION

ISO/IEC
TS

18822

First edition
2015-07-01

Programming languages — C++ — File
System Technical Specification

Languages de programmation — C++ — Spécification technique de
système de fichiers

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

ISO/IEC TS 18822:2015(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2015

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any
means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission.
Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office
Case postale 56 CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2015 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015 – All rights reserved iii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, the joint
technical committee may decide to publish other types of document:

— an ISO/IEC Publicly Available Specification (ISO/IEC PAS) represents an agreement between technical
experts in an ISO/IEC working group and is accepted for publication if it is approved by more than 50 %
of the members of the parent committee casting a vote;

— an ISO/IEC Technical Specification (ISO/IEC TS) represents an agreement between the members of the
joint technical committee and is accepted for publication if it is approved by 2/3 of the members of the
committee casting a vote.

An ISO/IEC PAS or ISO/IEC TS is reviewed after three years in order to decide whether it will be confirmed for
a further three years, revised to become an International Standard, or withdrawn. If the ISO/IEC PAS or
ISO/IEC TS is confirmed, it is reviewed again after a further three years, at which time it must either be
transformed into an International Standard or be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS 18822 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

Contents

Contents
1 Scope
2 Conformance

2.1 POSIX conformance
2.2 Operating system dependent behavior conformance
2.3 File system race behavior

3 Normative references
4 Terms and definitions

4.1 absolute path
4.2 canonical path
4.3 directory
4.4 file
4.5 file system
4.6 file system race
4.7 filename
4.8 hard link
4.9 link
4.10 native encoding
4.11 native pathname format
4.12 NTCTS
4.13 operating system dependent behavior
4.14 parent directory
4.15 path
4.16 pathname
4.17 pathname resolution
4.18 relative path
4.19 symbolic link

5 Requirements
5.1 Namespaces and headers
5.2 Feature test macros

6 Header <experimental/filesystem> synopsis
7 Error reporting
8 Class path

8.1 path generic pathname format grammar
8.2 path conversions

8.2.1 path argument format conversions
8.2.2 path type and encoding conversions

8.3 path requirements
8.4 path members

8.4.1 path constructors
8.4.2 path assignments

© ISO/IEC N4100

iii

ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

8.4.3 path appends
8.4.4 path concatenation
8.4.5 path modifiers
8.4.6 path native format observers
8.4.7 path generic format observers
8.4.8 path compare
8.4.9 path decomposition
8.4.10 path query

8.5 path iterators
8.6 path non-member functions

8.6.1 path inserter and extractor
8.6.2 path factory functions

9 Class filesystem_error
9.1 filesystem_error members

10 Enumerations
10.1 Enum class file_type
10.2 Enum class copy_options
10.3 Enum class perms
10.4 Enum class directory_options

11 Class file_status
11.1 file_status constructors
11.2 file_status observers
11.3 file_status modifiers

12 Class directory_entry
12.1 directory_entry constructors
12.2 directory_entry modifiers
12.3 directory_entry observers

13 Class directory_iterator
13.1 directory_iterator members
13.2 directory_iterator non-member functions

14 Class recursive_directory_iterator
14.1 recursive_directory_iterator members
14.2 recursive_directory_iterator non-member functions

15 Operational functions
15.1 Absolute
15.2 Canonical
15.3 Copy
15.4 Copy file
15.5 Copy symlink
15.6 Create directories
15.7 Create directory
15.8 Create directory symlink
15.9 Create hard link
15.10 Create symlink

© ISO/IEC N4100

iv

ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

15.11 Current path
15.12 Exists
15.13 Equivalent
15.14 File size
15.15 Hard link count
15.16 Is block file
15.17 Is character file
15.18 Is directory
15.19 Is empty
15.20 Is fifo
15.21 Is other
15.22 Is regular file
15.23 Is socket
15.24 Is symlink
15.25 Last write time
15.26 Permissions
15.27 Read symlink
15.28 Remove
15.29 Remove all
15.30 Rename
15.31 Resize file
15.32 Space
15.33 Status
15.34 Status known
15.35 Symlink status
15.36 System complete
15.37 Temporary directory path

© ISO/IEC N4100

v

ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

1 Scope [fs.scope]
1 This Technical Specification specifies requirements for implementations of an interface that computer

programs written in the C++ programming language may use to perform operations on file systems and
their components, such as paths, regular files, and directories. This Technical Specification is applicable
to information technology systems that can access hierarchical file systems, such as those with operating
systems that conform to the POSIX (3) interface. This Technical Specification is applicable only to
vendors who wish to provide the interface it describes.

2 Conformance [fs.conformance]
1 Conformance is specified in terms of behavior. Ideal behavior is not always implementable, so the

conformance sub-clauses take that into account.

2.1 POSIX conformance [fs.conform.9945]

1 Some behavior is specified by reference to POSIX (3). How such behavior is actually implemented is
unspecified.

2 [Note: This constitutes an "as if" rule allowing implementations to call native operating system
or other API's. —end note]

3 Implementations are encouraged to provide such behavior as it is defined by POSIX. Implementations
shall document any behavior that differs from the behavior defined by POSIX. Implementations that do
not support exact POSIX behavior are encouraged to provide behavior as close to POSIX behavior as is
reasonable given the limitations of actual operating systems and file systems. If an implementation
cannot provide any reasonable behavior, the implementation shall report an error as specified in § 7.

4 [Note: This allows users to rely on an exception being thrown or an error code being set when
an implementation cannot provide any reasonable behavior. — end note]

5 Implementations are not required to provide behavior that is not supported by a particular file system.

6 [Example: The FAT file system used by some memory cards, camera memory, and floppy discs
does not support hard links, symlinks, and many other features of more capable file systems, so
implementations are not required to support those features on the FAT file system. —end
example]

2.2 Operating system dependent behavior conformance [fs.conform.os]

1 Some behavior is specified as being operating system dependent (4.13). The operating system an
implementation is dependent upon is implementation defined.

© ISO/IEC N4100

1

ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

2 It is permissible for an implementation to be dependent upon an operating system emulator rather than
the actual underlying operating system.

2.3 File system race behavior [fs.race.behavior]

1 Behavior is undefined if calls to functions provided by this Technical Specification introduce a file
system race (4.6).

2 If the possibility of a file system race would make it unreliable for a program to test for a precondition
before calling a function described herein, Requires is not specified for the function.

3 [Note: As a design practice, preconditions are not specified when it is unreasonable for a
program to detect them prior to calling the function. —end note]

3 Normative references [fs.norm.ref]
1 The following referenced documents are indispensable for the application of this document. For dated

references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

•2 ISO/IEC 14882, Programming Language C++

•3 ISO/IEC 9945, Information Technology — Portable Operating System Interface (POSIX)

4 [Note: The programming language and library described in ISO/IEC 14882 is herein called the C++
Standard. References to clauses within the C++ Standard are written as "C++14 §3.2". Section
references are relative to N3936.

5 The operating system interface described in ISO/IEC 9945 is herein called POSIX. —end note]

6 This Technical Specification mentions commercially available operating systems for purposes of
exposition. [footnote]

7 Unless otherwise specified, the whole of the C++ Standard's Library introduction (C++14 §17) is
included into this Technical Specification by reference.

8 [footnote] POSIX® is a registered trademark of The IEEE. MAC OS® is a registered trademark
of Apple Inc. Windows® is a registered trademark of Microsoft Corporation. This information
is given for the convenience of users of this document and does not constitute an endorsement
by ISO or IEC of these products.

© ISO/IEC N4100

2

ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

4 Terms and definitions [fs.definitions]
1 For the purposes of this document, the terms and definitions given in the C++ Standard and the

following apply.

4.1 absolute path [fs.def.absolute-path]

1 A path that unambiguously identifies the location of a file without reference to an additional starting
location. The elements of a path that determine if it is absolute are operating system dependent.

4.2 canonical path [fs.def.canonical-path]

1 An absolute path that has no elements that are symbolic links, and no dot or dot-dot elements (8.1).

4.3 directory [fs.def.directory]

1 A file within a file system that acts as a container of directory entries that contain information about
other files, possibly including other directory files.

4.4 file [fs.def.file]

1 An object within a file system that holds user or system data. Files can be written to, or read from, or
both. A file has certain attributes, including type. File types include regular files and directories. Other
types of files, such as symbolic links, may be supported by the implementation.

4.5 file system [fs.def.filesystem]

1 A collection of files and certain of their attributes.

4.6 file system race [fs.def.race]

1 The condition that occurs when multiple threads, processes, or computers interleave access and
modification of the same object within a file system.

4.7 filename [fs.def.filename]

1 The name of a file. Filenames dot and dot-dot have special meaning. The following characteristics of
filenames are operating system dependent:

•2 The permitted characters. [Example: Some operating systems prohibit the ASCII control
characters (0x00-0x1F) in filenames. —end example].

•3 The maximum permitted length.
•4 Filenames that are not permitted.

© ISO/IEC N4100

3

ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

•5 Filenames that have special meaning.
•6 Case awareness and sensitivity during path resolution.
•7 Special rules that may apply to file types other than regular files, such as directories.

4.8 hard link [fs.def.hardlink]

1 A link (4.9) to an existing file. Some file systems support multiple hard links to a file. If the last hard
link to a file is removed, the file itself is removed.

2 [Note: A hard link can be thought of as a shared-ownership smart pointer to a file. —end note]

4.9 link [fs.def.link]

1 A directory entry that associates a filename with a file. A link is either a hard link (4.8) or a symbolic
link (4.19).

4.10 native encoding [fs.def.native.encode]

1 For narrow character strings, the operating system dependent current encoding for path names. For wide
character strings, the implementation defined execution wide-character set encoding (C++14 §2.3).

4.11 native pathname format [fs.def.native]

1 The operating system dependent pathname format accepted by the host operating system.

4.12 NTCTS [fs.def.ntcts]

1 Acronym for "null-terminated character-type sequence". Describes a sequence of values of a given
encoded character type terminated by that type's null character. If the encoded character type is EcharT,
the null character can be constructed by EcharT().

4.13 operating system dependent behavior [fs.def.osdep]

1 Behavior that is dependent upon the behavior and characteristics of an operating system. See
[fs.conform.os].

4.14 parent directory [fs.def.parent]

1 When discussing a given directory, the directory that both contains a directory entry for the given
directory and is represented by the filename dot-dot in the given directory.

2 When discussing other types of files, a directory containing a directory entry for the file under
discussion.

© ISO/IEC N4100

4

ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

3 This concept does not apply to dot and dot-dot.

4.15 path [fs.def.path]

1 A sequence of elements that identify the location of a file within a filesystem. The elements are the root-
nameopt, root-directoryopt, and an optional sequence of filenames. The maximum number of elements in
the sequence is operating system dependent.

4.16 pathname [fs.def.pathname]

1 A character string that represents the name of a path. Pathnames are formatted according to the generic
pathname format grammar (8.1) or an operating system dependent native pathname format.

4.17 pathname resolution [fs.def.pathres]

1 Pathname resolution is the operating system dependent mechanism for resolving a pathname to a
particular file in a file hierarchy. There may be multiple pathnames that resolve to the same file.
[Example: POSIX specifies the mechanism in section 4.11, Pathname resolution. —end example]

4.18 relative path [fs.def.relative-path]

1 A path that is not absolute, and so only unambiguously identifies the location of a file when resolved
relative to an implied starting location. The elements of a path that determine if it is relative are
operating system dependent. [Note: Pathnames "." and ".." are relative paths. —end note]

4.19 symbolic link [fs.def.symlink]

1 A type of file with the property that when the file is encountered during pathname resolution, a string
stored by the file is used to modify the pathname resolution.

2 [Note: Symbolic links are often called symlinks. A symbolic link can be thought of as a raw
pointer to a file. If the file pointed to does not exist, the symbolic link is said to be a "dangling"
symbolic link. —end note]

5 Requirements [fs.req]
1 Throughout this Technical Specification, char, wchar_t, char16_t, and char32_t are collectively

called encoded character types.

2 Template parameters named EcharT shall be one of the encoded character types.

3 Template parameters named InputIterator shall meet the C++ Standard's library input iterator
requirements (C++14 §24.2.3) and shall have a value type that is one of the encoded character types.

© ISO/IEC N4100

5

ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

4 [Note: Use of an encoded character type implies an associated encoding. Since signed char

and unsigned char have no implied encoding, they are not included as permitted types. —end
note]

5 Template parameters named Allocator shall meet the C++ Standard's library Allocator requirements
(C++14 §17.6.3.5).

5.1 Namespaces and headers [fs.req.namespace]

1 The components described in this technical specification are experimental and not part of the C++
standard library. All components described in this technical specification are declared in namespace
std::experimental::filesystem::v1 or a sub-namespace thereof unless otherwise specified. The
header described in this technical specification shall import the contents of
std::experimental::filesystem::v1 into std::experimental::filesystem as if by

2 namespace std {
namespace experimental {

namespace filesystem {
inline namespace v1 {}

}
}

}

3 Unless otherwise specified, references to other entities described in this technical specification are
assumed to be qualified with std::experimental::filesystem::v1::, and references to entities
described in the C++ standard are assumed to be qualified with std::.

5.2 Feature test macros [fs.req.macros]

1 This macro allows users to determine which version of this Technical Specification is supported by
header <experimental/filesystem>.

2 Header <experimental/filesystem> shall supply the following macro definition:

3 #define __cpp_lib_experimental_filesystem 201406

4 [Note: The value of macro __cpp_lib_experimental_filesystem is yyyymm where yyyy is the year
and mm the month when the version of the Technical Specification was completed. — end note]

6 Header <experimental/filesystem> synopsis
[fs.filesystem.synopsis]

1 namespace std { namespace experimental { namespace filesystem { inline namespace v1 {

class path;

© ISO/IEC N4100

6

ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

void swap(path& lhs, path& rhs) noexcept;
size_t hash_value(const path& p) noexcept;

bool operator==(const path& lhs, const path& rhs) noexcept;
bool operator!=(const path& lhs, const path& rhs) noexcept;
bool operator< (const path& lhs, const path& rhs) noexcept;
bool operator<=(const path& lhs, const path& rhs) noexcept;
bool operator> (const path& lhs, const path& rhs) noexcept;
bool operator>=(const path& lhs, const path& rhs) noexcept;

path operator/ (const path& lhs, const path& rhs);

template <class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const path& p);

template <class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, path& p);

template <class Source>
path u8path(const Source& source);

template <class InputIterator>
path u8path(InputIterator first, InputIterator last);

class filesystem_error;
class directory_entry;

class directory_iterator;

// enable directory_iterator range-based for statements
directory_iterator begin(directory_iterator iter) noexcept;
directory_iterator end(const directory_iterator&) noexcept;

class recursive_directory_iterator;

// enable recursive_directory_iterator range-based for statements
recursive_directory_iterator begin(recursive_directory_iterator iter) noexcept;
recursive_directory_iterator end(const recursive_directory_iterator&) noexcept;

class file_status;

struct space_info
{

uintmax_t capacity;
uintmax_t free;
uintmax_t available;

};

enum class file_type;
enum class perms;
enum class copy_options;
enum class directory_options;

typedef chrono::time_point<trivial-clock> file_time_type;

© ISO/IEC N4100

7

ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

// operational functions

path absolute(const path& p, const path& base=current_path());

path canonical(const path& p, const path& base = current_path());
path canonical(const path& p, error_code& ec);
path canonical(const path& p, const path& base, error_code& ec);

void copy(const path& from, const path& to);
void copy(const path& from, const path& to, error_code& ec) noexcept;
void copy(const path& from, const path& to, copy_options options);
void copy(const path& from, const path& to, copy_options options,

error_code& ec) noexcept;

bool copy_file(const path& from, const path& to);
bool copy_file(const path& from, const path& to, error_code& ec) noexcept;
bool copy_file(const path& from, const path& to, copy_options option);
bool copy_file(const path& from, const path& to, copy_options option,

error_code& ec) noexcept;

void copy_symlink(const path& existing_symlink, const path& new_symlink);
void copy_symlink(const path& existing_symlink, const path& new_symlink,

error_code& ec) noexcept;

bool create_directories(const path& p);
bool create_directories(const path& p, error_code& ec) noexcept;

bool create_directory(const path& p);
bool create_directory(const path& p, error_code& ec) noexcept;

bool create_directory(const path& p, const path& attributes);
bool create_directory(const path& p, const path& attributes,

error_code& ec) noexcept;

void create_directory_symlink(const path& to, const path& new_symlink);
void create_directory_symlink(const path& to, const path& new_symlink,

error_code& ec) noexcept;

void create_hard_link(const path& to, const path& new_hard_link);
void create_hard_link(const path& to, const path& new_hard_link,

error_code& ec) noexcept;

void create_symlink(const path& to, const path& new_symlink);
void create_symlink(const path& to, const path& new_symlink,

error_code& ec) noexcept;

path current_path();
path current_path(error_code& ec);
void current_path(const path& p);
void current_path(const path& p, error_code& ec) noexcept;

bool exists(file_status s) noexcept;
bool exists(const path& p);
bool exists(const path& p, error_code& ec) noexcept;

bool equivalent(const path& p1, const path& p2);

© ISO/IEC N4100

8

ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

bool equivalent(const path& p1, const path& p2, error_code& ec) noexcept;

uintmax_t file_size(const path& p);
uintmax_t file_size(const path& p, error_code& ec) noexcept;

uintmax_t hard_link_count(const path& p);
uintmax_t hard_link_count(const path& p, error_code& ec) noexcept;

bool is_block_file(file_status s) noexcept;
bool is_block_file(const path& p);
bool is_block_file(const path& p, error_code& ec) noexcept;

bool is_character_file(file_status s) noexcept;
bool is_character_file(const path& p);
bool is_character_file(const path& p, error_code& ec) noexcept;

bool is_directory(file_status s) noexcept;
bool is_directory(const path& p);
bool is_directory(const path& p, error_code& ec) noexcept;

bool is_empty(const path& p);
bool is_empty(const path& p, error_code& ec) noexcept;

bool is_fifo(file_status s) noexcept;
bool is_fifo(const path& p);
bool is_fifo(const path& p, error_code& ec) noexcept;

bool is_other(file_status s) noexcept;
bool is_other(const path& p);
bool is_other(const path& p, error_code& ec) noexcept;

bool is_regular_file(file_status s) noexcept;
bool is_regular_file(const path& p);
bool is_regular_file(const path& p, error_code& ec) noexcept;

bool is_socket(file_status s) noexcept;
bool is_socket(const path& p);
bool is_socket(const path& p, error_code& ec) noexcept;

bool is_symlink(file_status s) noexcept;
bool is_symlink(const path& p);
bool is_symlink(const path& p, error_code& ec) noexcept;

file_time_type last_write_time(const path& p);
file_time_type last_write_time(const path& p, error_code& ec) noexcept;
void last_write_time(const path& p, file_time_type new_time);
void last_write_time(const path& p, file_time_type new_time,

error_code& ec) noexcept;

void permissions(const path& p, perms prms);
void permissions(const path& p, perms prms, error_code& ec) noexcept;

path read_symlink(const path& p);
path read_symlink(const path& p, error_code& ec);

bool remove(const path& p);

© ISO/IEC N4100

9

ISO/IEC TS 18822:2015(E)

© ISO/IEC 2015 – All rights reserved

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TS 18822:2015
https://standards.iteh.ai/catalog/standards/sist/b08b82da-e329-425d-b7a2-

60a857f7b48c/iso-iec-ts-18822-2015

	[œ§)	2ýdy`ÿõÐ�µ
4nŸ4ˆHÜ�ﬂ4+ö>;‘�ÒZ¡µØ�Áø)˝ƒŽsÃ�⁄JK~·… M´g¢í®k�~e,êöýP¤‡™¶7‘^�Qs@��¯÷oNb−·ÃŒ

