INTERNATIONAL STANDARD

Third edition 2014-08-01

Rubber — Determination of metal content by atomic absorption spectrometry —

Part 3: **Determination of copper content**

iTeh ST Caoutchouc R Détermination de la teneur en métal par spectrométrie d'absorption atomique — (stancaros iteh ai) Partie 3: Dosage du cuivre

<u>ISO 6101-3:2014</u> https://standards.iteh.ai/catalog/standards/sist/19818d36-0132-4062a1b9-70040c2c236b/iso-6101-3-2014

Reference number ISO 6101-3:2014(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 6101-3:2014</u> https://standards.iteh.ai/catalog/standards/sist/19818d36-0132-4062a1b9-70040c2c236b/iso-6101-3-2014

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Page

Contents

Forev	word	iv	
1	Scope		
2	Normative references		
3	Principle		
4	Reagents		
5	Apparatus		
6	Sampling		
7	Procedure7.1Test portion7.2Preparation of test solution7.3Preparation of the calibration graph7.4Determination7.5Blank determination7.6Number of determinations	3 3 4 4 5 5	
8	Expression of results		
9	Precision	7	
10	0 Test report nnex A (informative) Method of standard additions nnex B (informative) Precision Standards.iteh.ai)		
Anne	ex A (informative) Method of standard additions		
Anne	ex B (informative) Precision Standard S. RCH.al)		
Biblio	iography <u>ISO 6101-3:2014</u>		
	https://standards.iteh.ai/catalog/standards/sist/19818d36-0132-4062-		

a1b9-70040c2c236b/iso-6101-3-2014

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 2, *Testing and analysis*.

<u>ISO 6101-3:2014</u>

This third edition cancels and replaces the second edition (1SO:6101-3:19973), which has been technically revised. a1b9-70040c2c236b/iso-6101-3-2014

ISO 6101 consists of the following parts, under the general title *Rubber* — *Determination of metal content by atomic absorption spectrometry*:

- Part 1: Determination of zinc content
- Part 2: Determination of lead content
- Part 3 Determination of copper content
- Part 4: Determination of manganese content
- Part 5: Determination of iron content
- Part 6: Determination of magnesium content

Rubber — Determination of metal content by atomic absorption spectrometry —

Part 3: **Determination of copper content**

WARNING — Persons using this part of ISO 6101 should be familiar with normal laboratory practice. This part of ISO 6101 does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

1 Scope

This part of ISO 6101 specifies an atomic absorption spectrometric method for the determination of the copper content of rubbers.

The method is applicable to raw rubber and rubber products having copper contents above 1 ppm. Copper contents below this limit can be determined, provided that suitable adjustments are made to the mass of the test portion and/or to the concentrations of the solutions used. The use of the standard additions method can lower the bottom limit of detection.

(standards.iteh.ai)

2 Normative references

<u>ISO 6101-3:2014</u>

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, sonly the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 123, Rubber latex — Sampling

ISO 124, Latex, rubber — Determination of total solids content

ISO 247, Rubber — Determination of ash

ISO 648, Laboratory glassware — Single-volume pipettes

ISO 1042, Laboratory glassware — One-mark volumetric flasks

ISO 1772, Laboratory crucibles in porcelain and silica

ISO 1795, Rubber, raw natural and raw synthetic — Sampling and further preparative procedures

ISO 4793, Laboratory sintered (fritted) filters — Porosity grading, classification and designation

3 Principle

A test portion is ashed at 550 °C \pm 25 °C in accordance with ISO 247, method A. The ash is dissolved in hydrochloric acid or nitric acid. The solution is aspirated into an atomic absorption spectrometer and the absorption is measured at a wavelength of 324,7 nm, using a copper hollow-cathode lamp as the copper emission source. Any silicates are volatilized by sulfuric and hydrofluoric acid.

NOTE ISO 6955:1982 defines the spectrometric terms used in this part of ISO 6101.

4 Reagents

During the analysis, unless otherwise stated, use only reagents of recognized analytical grade and only distilled water or water of equivalent purity.

4.1 Hydrochloric acid, $\rho_{20} = 1,18 \text{ Mg/m}^3, 37 \% (m/m)$.

4.2 Hydrochloric acid, diluted 1 + 2.

Dilute 1 volume of concentrated hydrochloric acid (4.1) with 2 volumes of water.

4.3 Sulfuric acid, $\rho_{20} = 1,84 \text{ Mg/m}^3, 95 \% \text{ (m/m) to } 97 \% \text{ (m/m)}.$

4.4 Sulfuric acid, diluted 1 + 3.

Add carefully 1 volume of concentrated sulfuric acid (<u>4.3</u>) to 3 volumes of water.

4.5 Hydrofluoric acid, $\rho_{20} = 1,13 \text{ Mg/m}^3, 38 \% \text{ (m/m)}$ to 40 % (m/m).

4.6 Hydrogen peroxide, 30 % (m/m) solution.

4.7 Concentrated nitric acid, $\rho_{20} = 1.41 \text{ Mg/m}^3$.

iTeh STANDARD PREVIEW Dilute nitric acid, 1,6 % (by mass), prepared by carefully pipetting 11,5 cm³ of concentrated nitric

4.8 Dilute nitric acid, 1,6 % (by mass), prepared by carefully pipetting 11,5 cm³ of concentrated nitric acid (<u>4.7</u>) into a 1 000 cm³ one-mark volumetric flask; making up to the mark with water and mixing thoroughly.

ISO 6101-3:2014

4.9 Standard copper stock solution, containing 1 g of Cupper 1,000 cm³32-4062-

Either use a commercially available standard copper solution, or prepare as follows:

Weigh, to the nearest 0,1 mg, 1 g of electrolytic copper (purity \geq 99,9 %) and dissolve in 50 cm³ of concentrated hydrochloric acid (4.1). Add 15 cm³ of hydrogen peroxide solution (4.6). After dissolution, decompose the excess hydrogen peroxide by boiling. Allow to cool and transfer quantitatively to a 1 000 cm³ one-mark volumetric flask (see 5.5). Dilute to the mark and mix thoroughly.

 $1\ cm^3$ of this standard stock solution contains $1\ 000\ \mu g$ of Cu.

4.10 Standard copper solution, containing 10 mg of Cu per 1 000 cm³.

Carefully pipette 10 cm³ of the standard copper stock solution (4.9) into a 1 000 cm³ one-mark volumetric flask (see 5.5) and dilute to the mark with 1 + 2 hydrochloric acid (4.2) or dilute nitric acid (4.8), and mix thoroughly. Prepare this solution on the day of use.

 $1\ cm^3$ of this standard stock solution contains 10 μg of Cu.

5 Apparatus

Ordinary laboratory apparatus, plus the following.

5.1 Atomic absorption spectrometer, fitted with a burner fed with acetylene and air, compressed to at least 60 kPa and 300 kPa, respectively, and also fitted with a copper hollow-cathode lamp as the copper emission source.

The instrument shall be operated in accordance with the manufacturer's instructions for optimum performance.

Alternatively, an electrothermal atomization device (graphite furnace) may be used. It shall be operated by a competent person in accordance with the manufacturer's instructions for optimum performance.

5.2 Balance, accurate to 0,1 mg.

5.3 Muffle furnace, capable of being maintained at a temperature of 550 °C ± 25 °C.

5.4 Glass filter crucible, filter pore size 16 μm to 40 μm (porosity grade P40 – according to ISO 4793).

5.5 One-mark volumetric flasks, glass-stoppered, of capacities 50 cm³, 100 cm³, 200 cm³, 500 cm³ and 1 000 cm³, complying with the requirements of ISO 1042, class A.

5.6 Volumetric pipettes, of capacities 5 cm³, 10 cm³, 20 cm³, and 50 cm³, complying with the requirements of ISO 648, class A.

5.7 Graduated pipette, of capacity 1cm³, complying with the requirements of ISO 835, class A.

- **5.8 Electric hotplate,** or heated sand bath.
- 5.9 Steam bath.
- 5.10 Platinum or borosilicate-glass rod, for use as a stirrer. VIEW

5.11 Crucible, of platinum, and of capacity 50 cm³ to 150 cm³ depending on the test portion size.

5.12 Crucible, of silica, porcelain, or bor<u>osilicate glass</u>, of capacity 50 cm³ to 150 cm³ depending on the test portion size, complying with the requirements of ISO 177236-0132-4062-

a1b9-70040c2c236b/iso-6101-3-2014

5.13 Ashless filter paper.

6 Sampling

Carry out sampling as follows:

- raw rubber: in accordance with ISO 1795;
- latex: in accordance with ISO 123;
- products: to be representative of the whole batch.

7 Procedure

7.1 Test portion

Weigh, to the nearest 0,1 mg, approximately 1 g to 5 g of rubber product and 5 g to 10 g of raw rubber, milled or finely cut, into an appropriate crucible. Wrap the test portion in an ashless filter paper and place into an appropriate crucible (5.11 or 5.12). The size of the test portion shall be judged by prior knowledge of the approximate amount of copper present.

For natural rubber latex concentrate, take a portion of thoroughly mixed latex containing about 10 g of total solids, make into a thin film by pouring the portion onto a glass plate, dry to constant mass as specified in ISO 124 and cut into small pieces.

For raw, natural rubber, take the test portion from a test sample prepared in accordance with ISO 1795.

7.2 Preparation of test solution

7.2.1 Destruction of organic matter

Ash the test portion in accordance with method A of ISO 247, in the muffle furnace (5.3), maintained at 550 °C \pm 25 °C. If the ash is black, caused by small amounts of carbon black, stir carefully with the platinum or borosilicate-glass rod (5.10) and continue heating.

7.2.2 Dissolution of inorganic residue using hydrochloric acid

After ashing, allow the crucible and its contents to cool to ambient temperature. Add 20 cm³ of concentrated hydrochloric acid (4.1). Heat the mixture on the steam bath (5.9) for at least 10 min. Do not let the reaction mixture boil. Allow to cool to ambient temperature and transfer the solution quantitatively, with the aid of water, to a 50 cm³ one-mark volumetric flask (5.5). If the ash is not totally dissolved, proceed as follows.

- Transfer the solution and the undissolved ash quantitatively, with the aid of water, to a platinum crucible (5.11). Add a few drops of concentrated sulfuric acid (4.3) and 5 cm³ of hydrofluoric acid (4.5). Heat on the electric hotplate or heated sand bath (5.8) in a fume cupboard and evaporate to dryness, while stirring with a platinum rod (5.10). Repeat this digestion with the same quantities of sulfuric and hydrofluoric acids two more times.
- Allow to cool to ambient temperature, add 20 cm³ of concentrated hydrochloric acid (4.1), heat for 10 min and transfer quantitatively, with the aid of water, to a 50 cm³ one-mark volumetric flask (5.5).
 iTeh STANDARD PREVIEW
- Dilute to the mark with water and mix thoroughly. Insoluble matter can settle and, if so, shall be filtered off using a filter crucible (5.4) just before making spectrometric measurements in accordance with 7.3.

ISO 6101-3:2014

Test solutions should contain approximately 12t% hydrochloric acid3 (fevaporation, etc., has reduced or increased this concentration, adjust accordingly with concentrated hydrochloric acid (4.1) or water.

7.2.3 Dissolution of inorganic residue using nitric acid – Alternative method

Add 10 cm³ of dilute nitric acid (4.8) to the cooled residue. Cover with a watch glass and heat on a steam bath (5.9) for at least 30 min. Allow to cool to ambient temperature. Filter the contents of the crucible into a 50 cm³ one-mark volumetric flask, rinsing the crucible, and making up to the mark with dilute nitric acid (4.8).

7.3 Preparation of the calibration graph

7.3.1 Preparation of calibration solutions

7.3.1.1 Into a series of five 100 cm³ one-mark volumetric flasks (see 5.5), introduce, using pipettes (see 5.6) the volumes of standard copper solution (4.10) indicated in Table 1. Dilute to the mark with 1 + 2 hydrochloric acid solution (4.2) or dilute nitric acid (4.8) and mix thoroughly.

Volume of standard copper solution cm ³	Mass of copper contained in 1 cm ³ μg
50	5
20	2
10	1

Table 1 — Standard calibration solutions

Volume of standard copper solution cm ³	Mass of copper contained in 1 cm ³ μg
5	0,5
0	0

Table 1 (continued)

7.3.1.2 Prepare the set of calibration solutions immediately prior to the determination.

7.3.2 Spectrometric measurements

Switch on the spectrometer (5.1) sufficiently in advance to ensure stabilization. With the copper hollow-cathode tube suitably positioned, adjust the wavelength to 324,7 nm and the sensitivity and slit aperture according to the characteristics of the instrument.

Adjust the pressures and flow rates of the air and of the acetylene in accordance with the manufacturer's instructions so as to obtain a clear blue, non-luminous, oxidizing flame, suited to the characteristics of the particular spectrometer being used.

Aspirate the set of calibration solutions in succession into the flame and measure the absorbance of each solution twice, averaging the readings. Take care that the aspiration rate is constant throughout this process. Ensure also that at least one calibration solution is at or below the analyte level found in the rubber being tested.

Aspirate water through the burner after each measurement.

(standards.iteh.ai)

7.3.3 Plotting the calibration graph

ISO 6101-3:2014

Plot a graph having to for the advantage of the calibration solutions as abscissee and the corresponding values of absorbance, corrected for the absorbance of the calibration blank, as ordinates. Represent the points on the graph by the best straight line as judged visually or as calculated by the least-squares fit method.

7.4 Determination

7.4.1 Spectrometric measurements

Carry out duplicate spectrometric measurements at a wavelength of 324,7 nm on the test solution prepared in 7.2.2 or 7.2.3, following the procedure specified in 7.3.2.

7.4.2 Dilution

If the instrument response for the test solution is greater than that found for the calibration solution having the highest copper content, dilute, as appropriate, with 1 + 2 hydrochloric acid solution (4.2) or dilute nitric acid (4.8) in accordance with the following procedure.

Pipette carefully a suitable volume ($V \, \text{cm}^3$) of the test solution into a 100 cm³ one-mark volumetric flask (see 5.5) so that the copper concentration lies within the range covered by the calibration solutions. Dilute to the mark with 1 + 2 hydrochloric acid (4.2) or dilute nitric acid (4.8). Repeat the spectrometric measurements.

NOTE To increase the reliability of the test method, the standard-additions method can be used (see <u>Annex A</u>).

7.5 Blank determination

Carry out a blank test in parallel with the determination, using 1 + 2 hydrochloric acid (4.2) or dilute nitric acid (4.8), but omitting the test portion.