SLOVENSKI STANDARD SIST ISO 23509:2020 01-oktober-2020 # Geometrija stožčastih in hipoidnih zobnikov Bevel and hypoid gear geometry Géométrie des engrenages coniques et hypoïdes PREVIEW Ta slovenski standard je istoveten z: (standards.iteh.ai) SIST ISO 23509:2020 https://standards.iteh.ai/catalog/standards/sist/f4c8de7f-ade2-458a-aafb-adcde1c6b559/sist-iso-23509-2020 ICS: 21.200 Gonila Gears SIST ISO 23509:2020 en,fr,de SIST ISO 23509:2020 # iTeh STANDARD PREVIEW (standards.iteh.ai) SIST ISO 23509:2020 https://standards.iteh.ai/catalog/standards/sist/f4c8de7f-ade2-458a-aafb-adcde1c6b559/sist-iso-23509-2020 SIST ISO 23509:2020 # INTERNATIONAL STANDARD ISO 23509 Second edition 2016-11-15 # Bevel and hypoid gear geometry Géométrie des engrenages coniques et hypoïdes # iTeh STANDARD PREVIEW (standards.iteh.ai) SIST ISO 23509:2020 https://standards.iteh.ai/catalog/standards/sist/f4c8de7f-ade2-458a-aafb-adcde1c6b559/sist-iso-23509-2020 Reference number ISO 23509:2016(E) # iTeh STANDARD PREVIEW (standards.iteh.ai) SIST ISO 23509:2020 https://standards.iteh.ai/catalog/standards/sist/f4c8de7f-ade2-458a-aafb-adcde1c6b559/sist-iso-23509-2020 # COPYRIGHT PROTECTED DOCUMENT #### © ISO 2016, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Co | ntent | cs · | Page | | | | | |------|------------|---|----------|--|--|--|--| | Fore | eword | | v | | | | | | Intr | oductio | on | vi | | | | | | 1 | Scon | oe | 1 | | | | | | 2 | - | native references | | | | | | | _ | | | | | | | | | 3 | | ns, definitions and symbols | | | | | | | | 3.1
3.2 | Terms and definitions Symbols | | | | | | | 4 | | gn considerations | | | | | | | 4 | 4.1 | General | | | | | | | | 4.2 | Types of bevel gears | | | | | | | | | 4.2.1 General | | | | | | | | | 4.2.2 Straight bevels | | | | | | | | | 4.2.3 Spiral bevels | | | | | | | | | 4.2.4 Zerol bevels | | | | | | | | | 4.2.5 Hypoids | | | | | | | | 4.3 | Ratios | | | | | | | | 4.4 | Hand of spiral | | | | | | | | 4.5 | Preliminary gear size | | | | | | | 5 | Toot | h geometry and cutting considerations | 12 | | | | | | | 5.1 | Manufacturing considerations | 12 | | | | | | | 5.2 | Tooth taper (standards.iteh.ai) Tooth depth configurations | 12 | | | | | | | 5.3 | Tooth depth configurations | 14 | | | | | | | | 5.3.1 Taper depth | 14 | | | | | | | г 4 | 5.3.1 Taper depth 5.3.2 Uniform depth SIST ISO 23509:2020 Dedendum angle modifications added 1 c6b559/sist-iso-23509-2020 Cutter radius added 1 c6b559/sist-iso-23509-2020 | 15 | | | | | | | 5.4 | Dedendum angle modifications attacks and recode 1 dec 1 dec 2 dec 1 dec 2 dec 1 dec 2 | 17 | | | | | | | 5.5
5.6 | Mean radius of curvature | 17
17 | | | | | | | 5.7 | Hypoid design | | | | | | | | 5.8 | Most general type of gearing | | | | | | | | 5.9 | Hypoid geometry | | | | | | | | 5.7 | 5.9.1 Basics | | | | | | | | | 5.9.2 Crossing point | | | | | | | 6 | Pitcl | 1 cone parameters | | | | | | | U | 6.1 | Initial data for pitch cone parameters | | | | | | | | 6.2 | Determination of pitch cone parameters for bevel and hypoid gears | | | | | | | | | 6.2.1 Method 0 | | | | | | | | | 6.2.2 Method 1 | | | | | | | | | 6.2.3 Method 2 | 26 | | | | | | | | 6.2.4 Method 3 | 31 | | | | | | 7 | Gear | dimensions | 33 | | | | | | - | 7.1 | | | | | | | | | 7.2 | | | | | | | | | 7.3 | | | | | | | | | 7.4 | Determination of root angles and face angles | | | | | | | | 7.5 | | | | | | | | | 7.6 | Determination of inner and outer spiral angles | | | | | | | | | 7.6.1 Pinion | | | | | | | | 77 | 7.6.2 Wheel | | | | | | | | 7.7 | Determination of tooth depth | | | | | | | | 7.8
7.9 | Determination of tooth thickness Determination of remaining dimensions | | | | | | | | 1.7 | Detel illination of remaining unitensions | 40 | | | | | | 8 | Unde | rcut check | 47 | |--------|---------------|---|-----| | | 8.1 | Pinion | 47 | | | 8.2 | Wheel | 49 | | Annex | | ormative) Structure of ISO formula set for calculation of geometry data of and hypoid gears | 51 | | Annex | B (inf | ormative) Pitch cone parameters | 57 | | Annex | c C (info | ormative) Gear dimensions | 68 | | Annex | D (inf | ormative) Analysis of forces | 75 | | Annex | E (info | ormative) Machine tool data | 78 | | Annex | F (info | ormative) Sample calculations | 79 | | Biblio | graphy | 7 | 138 | | | | | | # iTeh STANDARD PREVIEW (standards.iteh.ai) SIST ISO 23509:2020 https://standards.iteh.ai/catalog/standards/sist/f4c8de7f-ade2-458a-aafb-adcde1c6b559/sist-iso-23509-2020 ## Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. The committee responsible for this document is ISO/TC 60, Gears, Subcommittee SC 2, Gear capacity calculation. SIST ISO 23509:2020 This second edition cancels and replaces the first edition (ISO-23509:2006), which has been technically revised with the following changes cde1c6b559/sist-iso-23509-2020 - minor corrections of several formulae: - the figures have been reworked; - explanations have been added in 4.4; - the structure of Formula (129) has been changed to cover the case $\zeta_m = 0^\circ$; - a formula for the calculation of c_{be2} has been added as Formula (F.160); - the values for α_{nC} and α_{nD} in <u>Formulae (F.318)</u> and <u>(F.319)</u> have been extended to three decimal digits to prevent rounding errors. # Introduction For many decades, information on bevel, and especially hypoid, gear geometry has been developed and published by the gear machine manufacturers. It is clear that the specific formulae for their respective geometries were developed for the mechanical generation methods of their particular machines and tools. In many cases, these formulae could not be used in general for all bevel gear types. This situation changed with the introduction of universal, multi-axis, CNC-machines, which in principle are able to produce nearly all types of gearing. The manufacturers were, therefore, asked to provide CNC programs for the geometries of different bevel gear generation methods on their machines. This document integrates straight bevel gears and the three major design generation methods for spiral bevel gears into one complete set of formulae. In only a few places do specific formulae for each method have to be applied. The structure of the formulae is such that they can be programmed directly, allowing the user to compare the different designs. The formulae of the three methods are developed for the general case of hypoid gears and to calculate the specific case of spiral bevel gears by entering zero for the hypoid offset. Additionally, the geometries correspond such that each gear set consists of a generated or non-generated wheel without offset and a pinion which is generated and provided with the total hypoid offset. An additional objective of this document is that, on the basis of the combined bevel gear geometries, an ISO hypoid gear rating system can be established in the future. # iTeh STANDARD PREVIEW (standards.iteh.ai) SIST ISO 23509:2020 https://standards.iteh.ai/catalog/standards/sist/f4c8de7f-ade2-458a-aafb-adcde1c6b559/sist-iso-23509-2020 # Bevel and hypoid gear geometry # 1 Scope This document specifies the geometry of bevel gears. The term bevel gears is used to mean straight, spiral, zerol bevel and hypoid gear designs. If the text pertains to one or more, but not all, of these, the specific forms are identified. The manufacturing process of forming the desired tooth form is not intended to imply any specific process, but rather to be general in nature and applicable to all methods of manufacture. The geometry for the calculation of factors used in bevel gear rating, such as ISO 10300 (all parts), is also included. This document is intended for use by an experienced gear designer capable of selecting reasonable values for the factors based on his/her knowledge and background. It is not intended for use by the engineering public at large. Annex A provides a structure for the calculation of the methods provided in this document. # 2 Normative references STANDARD PREVIEW There are no normative references in this document. SIST ISO 23509:2020 # 3 Terms, definitions and symbols/standards/sist/f4c8de7f-ade2-458a-aafb-adcde1c6b559/sist-iso-23509-2020 For the purposes of this document, the terms and definitions given in ISO 1122-1 and the following apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp NOTE 1 The symbols, terms and definitions used in this document are, wherever possible, consistent with other International Standards. It is known, because of certain limitations, that some symbols, their terms and definitions, as used in this document, are different from those used in similar literature pertaining to spur and helical gearing. NOTE 2 Bevel gear nomenclature used throughout this document is illustrated in <u>Figure 1</u>, the axial section of a bevel gear, and in <u>Figure 2</u>, the mean transverse section. Hypoid nomenclature is illustrated in <u>Figure 3</u>. Subscript 1 refers to the pinion and subscript 2 to the wheel. | v | AT: | |------|-----| | - 17 | υv | | 1 | back angle | 10 | front angle | 19 | outer pitch diameter, $d_{\mathrm{e}1}$, $d_{\mathrm{e}2}$ | |---|---|----|--|----|---| | 2 | back cone angle | 11 | mean cone distance, $R_{ m m}$ | 20 | root angle, δ_{f1} , δ_{f2} | | 3 | back cone distance | 12 | mean point | 21 | shaft angle, Σ | | 4 | clearance, c | 13 | mounting distance | 22 | equivalent pitch radius | | 5 | crown point | 14 | outer cone distance, $R_{\rm e}$ | 23 | mean pitch diameter, $d_{\rm m1}$, $d_{\rm m2}$ | | 6 | crown to back | 15 | outside diameter, d_{ae1} , d_{ae2} | 24 | pinion | | 7 | dedendum angle, $ heta_{ m f1}$, $ heta_{ m f2}$ | 16 | pitch angle, δ_1 , δ_2 | 25 | wheel | | 8 | face angle δ_{a1} , δ_{a2} | 17 | pitch cone apex | | | | 9 | face width, b | 18 | crown to crossing point, $t_{ m xo1}$, $t_{ m xo2}$ | 2 | | NOTE See Figure 2 for mean transverse section, A-A. Figure 1 — Bevel gear nomenclature — Axial plane # Key circular pitch 1 whole depth, $h_{\rm m}$ 5 working depth, $h_{\rm mw}$ 2 pitch point 6 chordal addendum 10 addendum, ham clearance, c7 chordal thickness 11 dedendum, h_{fm} 3 backlash 4 circular thickness 8 12 equivalent pitch radius NOTE See A-A in Figure 1. Figure 2 — Bevel gear nomenclature — Mean transverse section ## Key - 1 face apex beyond crossing point, t_{zF1} - 2 root apex beyond crossing point, t_{zR1} - 3 pitch apex beyond crossing point, t_{z1} - 4 crown to crossing point, t_{xo1} , t_{xo2} - 5 front crown to crossing point, t_{xi1} - 6 outside diameter, d_{ae1} , d_{ae2} - 7 outer pitch diameter, d_{e1} , d_{e2} - 8 shaft angle, Σ - 9 root angle, δ_{f1} , δ_{f2} - 10 face angle of blank, δ_{a1} , δ_{a2} - 11 wheel face width, b_2 - 12 hypoid offset, a - 13 mounting distance - 14 pitch angle, δ_2 - 15 outer cone distance, R_e - 16 pinion face width, b_1 NOTE Apex beyond crossing point values are positive when crossing point lies inside the respective cone. Figure 3 — Hypoid nomenclature #### 3.1 Terms and definitions #### 3.1.1 #### mean chordal addendum $h_{\rm amc1}$, $h_{\rm amc2}$ height from the top of the gear tooth to the chord subtending the circular thickness arc at the mean cone distance in a plane normal to the tooth face #### 3.1.2 # mean addendum $h_{\rm am1}, h_{\rm am2}$ height by which the gear tooth projects above the pitch cone at the mean cone distance #### 3.1.3 #### outer normal backlash allowance *İ*en amount by which the tooth thicknesses are reduced to provide the necessary backlash in assembly Note 1 to entry: It is specified at the outer cone distance. #### 3.1.4 #### coast side

 vormal convention> convex pinion flank in mesh with the concave wheel flank #### 3.1.5 # cutter radius iTeh STANDARD PREVIEW $r_{\rm c0}$ nominal radius of the face type cutter or cup-shaped grinding wheel that is used to cut or grind the spiral bevel teeth # **3.1.6** SIST ISO 23509:2020 sum of dedendum amglesandards.iteh.ai/catalog/standards/sist/f4c8de7f-ade2-458a-aafb- $\Sigma\theta_{\rm f}$ adcde1c6b559/sist-iso-23509-2020 sum of the pinion and wheel dedendum angles #### 3.1.7 #### sum of constant slot width dedendum angles $\Sigma heta_{ m fC}$ sum of dedendum angles for constant slot width #### 3.1.8 ### sum of modified slot width dedendum angles $\Sigma \theta_{\rm fM}$ sum of dedendum angles for modified slot width taper ## 3.1.9 ### sum of standard depth dedendum angles $\Sigma heta_{\mathsf{fS}}$ sum of dedendum angles for standard depth taper #### 3.1.10 ### sum of uniform depth dedendum angles $\Sigma \theta_{\rm fII}$ sum of dedendum angles for uniform depth #### 3.1.11 #### mean dedendum $h_{\rm fm1}$, $h_{\rm fm2}$ depth of the tooth space below the pitch cone at the mean cone distance #### 3.1.12 #### mean whole depth $h_{\rm m}$ tooth depth at mean cone distance #### 3.1.13 #### mean working depth $h_{\rm mw}$ depth of engagement of two gears at mean cone distance #### 3.1.14 #### direction of rotation direction determined by an observer viewing the gear from the back looking towards the pitch apex #### 3.1.15 #### drive side by normal convention, concave pinion flank in mesh with the convex wheel flank #### 3.1.16 #### face width h length of the teeth measured along a pitch cone element #### 3.1.17 #### mean addendum factor c_{ham} iTeh STANDARD PREVIEW apportions the mean working depth between wheel and pinion mean addendums (standards.iteh.ai) Note 1 to entry: The gear mean addendum is equal to c_{ham} times the mean working depth. #### **3.1.18** SIST ISO 23509:2020 mean radius of curvature https://standards.iteh.ai/catalog/standards/sist/f4c8de7f-ade2-458a-aafb- 0m8 adcde1c6b559/sist-iso-23509-2020 radius of curvature of the tooth surface in the lengthwise direction at the mean cone distance #### 3.1.19 #### number of blade groups Z_0 number of blade groups contained in the circumference of the cutting tool ## 3.1.20 #### number of teeth Z_1, Z_2 number of teeth contained in the whole circumference of the pitch cone #### 3.1.21 ### number of crown gear teeth z_{p} number of teeth in the whole circumference of the crown gear Note 1 to entry: The number may not be an integer. # 3.1.22 #### mean normal chordal tooth thickness Smnc1, Smnc2 chordal thickness of the gear tooth at the mean cone distance in a plane normal to the tooth trace #### 3.1.23 # mean normal circular tooth thickness $s_{\mathrm{mn1}}, s_{\mathrm{mn2}}$ length of arc on the pitch cone between the two sides of the gear tooth at the mean cone distance in the plane normal to the tooth trace #### 3.1.24 #### tooth trace curve of the tooth on the pitch surface #### 3.1.25 #### mean point point where the calculation of basic geometry is executed Note 1 to entry: Mean point does not necessarily coincide with middle point of face width. Note 2 to entry: In all the methods listed in this document, the term "mean point" refers to "calculation point". See <u>A.3</u> for calculation points. # 3.2 Symbols Table 1 — Symbols used in this document | Symbol | Description | Unit | |-------------------------------------|---|------| | а | hypoid offset ANDARD PREVIEW | mm | | b_1, b_2 | face width | mm | | $b_{\mathrm{e}1},b_{\mathrm{e}2}$ | face width from calculation point to outside | mm | | b_{i1} , b_{i2} | face width from calculation point to inside | mm | | С | clearance SIST ISO 23509:2020 | mm | | c _{be2} | https://standards.itelr.ai/catalog/standards/sist/f4c8de7f-ade2-458a-aafb-
face width factor | _ | | c _{ham} | mean addendum factor of wheel | _ | | d_{ae1} , d_{ae2} | outside diameter | mm | | $d_{\mathrm{e}1}, d_{\mathrm{e}2}$ | outer pitch diameter | mm | | $d_{\mathrm{m1}}, d_{\mathrm{m2}}$ | mean pitch diameter | mm | | F_{ax} | axial force | N | | F _{mt1} , F _{mt2} | tangential force at mean diameter | N | | $F_{\rm rad}$ | radial force | N | | $f_{lpha ext{lim}}$ | influence factor of limit pressure angle | _ | | h_{ae1} , h_{ae2} | outer addendum | mm | | h_{am1} , h_{am2} | mean addendum | mm | | h_{amc1}, h_{amc2} | mean chordal addendum | mm | | h_{e1} , h_{e2} | outer whole depth | mm | | $h_{\rm fe1}, h_{\rm fe2}$ | outer dedendum | mm | | $h_{\rm fi1}$, $h_{\rm fi2}$ | inner dedendum | mm | | $h_{\rm fm1}, h_{\rm fm2}$ | mean dedendum | mm | | $h_{ m m}$ | mean whole depth | mm | | $h_{ m mw}$ | mean working depth | mm | | h_{t1} | pinion whole depth | mm | | <i>j</i> en | outer normal backlash | mm | | <i>j</i> et | outer transverse backlash | mm | | $j_{ m mn}$ | mean normal backlash | mm |