INTERNATIONAL STANDARD

Second edition 2016-10-15

Rubber, raw synthetic — Determination of the molecular-mass distribution of solution polymers by gel permeation chromatography

Caoutchouc synthétique brut — Détermination de la répartition de la masse moléculaire pour les caoutchoucs polymérisés en solution par **iTeh ST**chromatographie par perméation de gel

(standards.iteh.ai)

<u>ISO 11344:2016</u> https://standards.iteh.ai/catalog/standards/sist/fb97cbec-1413-4195-a075-4689253cf16e/iso-11344-2016

Reference number ISO 11344:2016(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11344:2016</u> https://standards.iteh.ai/catalog/standards/sist/fb97cbec-1413-4195-a075-4689253cf16e/iso-11344-2016

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Forew	zord	iv	
1	Scope	1	
2	Principle	1	
3	General	1	
4	Reagents and materials		
5	Apparatus		
6	Analytical conditions	5	
7	Procedure7.1Solvent degassing7.2Calibration7.3Preparation of test solution7.4Analysis	5 5 7 8	
8	Expression of results	8	
9	Precision	9	
10	Test report	9	
Annex Annex	x A (informative) Molecular-mass parameters determined by instrumental software x B (informative) Calculation of molecular-mass parameters by manual procedure	10 14	
Annex	c C (informative) Comparison of results obtained by automatic procedure (software) and manual procedure	17	
Annex	x D (informative) Precision (only for instrumental software procedure)		
Biblio	graphy https://standards.iteh.ai/catalog/standards/sist/fb97cbec-1413-4195-a075- 4689253cf16e/iso-11344-2016		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. <u>www.iso.org/directives</u>

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. <u>www.iso.org/patents</u>

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ASO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 2, *Testing and analysis*.

<u>ISO 11344:2016</u>

This second edition cancels and replaces the first edition (ISOPT344:2004), which has been technically revised by replacing the hazardous *o*-dichlorobenzene with BHT (butylated hydroxy toluene) in the procedure. It also incorporates the Technical Corrigendum ISO 11344:2004/Cor.1:2008.

Rubber, raw synthetic — Determination of the molecularmass distribution of solution polymers by gel permeation chromatography

WARNING 1 — Persons using this International Standard should be familiar with normal laboratory practice. This International Standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

WARNING 2 — Certain procedures specified in this International Standard might involve the use or generation of substances, or the generation of waste, that could constitute a local environmental hazard. Reference should be made to appropriate documentation on safe handling and disposal after use.

1 Scope

This International Standard describes a method for the determination of the molecular mass, expressed as polystyrene, and the molecular-mass distribution of polymers produced in solution which are completely soluble in tetrahydrofuran (THF) and which have a molecular-mass range from 5×10^3 to 1×10^6 .

It is not the purpose of this international Standard to explain the theory of gel permeation chromatography.

<u>ISO 11344:2016</u> https://standards.iteh.ai/catalog/standards/sist/fb97cbec-1413-4195-a075-4689253cfl 6e/iso-11344-2016

2 Principle

The molecular components of a polymer are separated on the basis of macromolecule size on a gel permeation column. A known quantity of a dilute solution of the polymer is injected into a stream of solvent, which carries it through the column at a constant rate. The concentration of the separated molecular components in the solvent stream is measured by a suitable detector. Through the use of a calibration curve, both the number-average molecular mass (M_n) and mass-average molecular mass (M_w) of the material analysed can be determined from the retention time and the corresponding concentration.

3 General

3.1 Gel permeation chromatography (GPC), which is also known as size exclusion chromatography (SEC), is a particular type of liquid chromatography which allows the separation of the various components of a polymer based on molecular size.

3.2 The molecules of a polymer do not all have the same mass, but comprise a range of different masses. For this reason, the usual concept of molecular mass is not applicable to polymeric materials. Instead, different average molecular masses are determined as shown in <u>Table 1</u>.

Mass-average molecular mass M _w	$= \Sigma(N_i M_i^2) / \Sigma(N_i M_i)$		
	$=\Sigma(A_iM_i)/\Sigma A_i$		
Number-average molecular mass <i>M</i> _n	$=\Sigma(M_iN_i)/\Sigma N_i$		
	$= \Sigma A_i / \Sigma (A_i / M_i)$		
z-Average molecular mass M_z	$= \Sigma(N_i M_i^3) / \Sigma(N_i M_i^2)$		
	$= \Sigma(A_i M_i^2) / \Sigma(A_i M_i)$		
Peak molecular mass <i>M</i> p	Molecular mass at peak maximum		
where			
N_i is the number of molecules having a molecular mass of M_i ;			
A_i is the area of the time-slice that corresponds to molecular mass M_i .			

The molecular-mass distribution is an important parameter in determining the properties of the polymer. It may be represented by the polydispersity D given by

 $D = M_{\rm w}/M_{\rm n}$

NOTE Polymers invariably consist of macromolecules with a range of molecular sizes. Even the so-called monodisperse polystyrenes have a polydispersity of 1,1 compared to a value of 1,0 for a pure compound with a single molecular mass. As the range of molecular sizes present within the polymer increases, so does the polydispersity. (standards.iteh.ai)

4 Reagents and materials ISO 11344:2016

https://standards.iteh.ai/catalog/standards/sist/fb97cbec-1413-4195-a075-

4.1 Tetrahydrofuran (THF), with or without 2,6-di-*tert*-butyl 4-methylphenol (BHT), solvent for the mobile phase, analytical grade.

4.2 THF containing 2,6-di-*tert***-butyl-4-methylphenol**, solvent for sample dissolution, analytical grade (THF containing BHT solution).

The solution of 2,6-di-*tert*-butyl-4-methylphenol (also known as BHT, butylated hydroxytoluene) in THF is commercially available. For the purpose of this International Standard, the solution is called THF containing BHT.

When it is difficult to find this solution in the market, the alternative can be obtained by adding 100 mg to 500 mg of BHT to 1 l of THF. Preparation of this solution is also effective when a noticeable peak is not obtained for BHT.

4.3 Set of certified polystyrene reference standards (minimum 10), with molecular masses in the range 5×10^2 to 1×10^7 (depending on the sample molecular-mass range) and a very narrow molecular-mass distribution (D < 1,10) (see Table 2 for an example of such a set, available from various chemical suppliers).

Standard No.	Actual molecular mass M _i	$D (= M_w/M_n)$
1	1 030 000	1,05
2	770 000	1,04
3	336 000	1,03
4	210 000	1,03
5	156 000	1,03
6	66 000	1,03
7	30 300	1,03
8	22 000	1,03
9	11 600	1,03
10	7 000	1,04
11	5 050	1,05

Table 2 —	Set of po	lvstvrene	standards
I UDIC A	bee of po	1,50,10110	otuniaan ao

5 Apparatus

Ordinary laboratory apparatus, plus the following:

5.1 Gel permeation chromatograph, consisting of the components specified in <u>5.1.1</u> to <u>5.1.8</u>.

5.1.1 Solvent reservoir, of sufficient capacity to complete the analysis without refilling.

NOTE A large stock of THF is needed to avoid frequent refills. Changes in the quantity of dissolved air or impurities due to addition of fresh solvent cause significant variations in the refractive index and can also affect the retention time. Air bubbles at the pump head reduce the quantity of solvent pumped (leading to errors in retention volumes and times) and can block the pump sift the volume of the air/bubbles reach excessive levels. After adding fresh solvent, it takes 2 h to 3 h to obtain a stable baseline.

5.1.2 Automatic online degassing system or helium sparging of solvent reservoir, to stabilize the solvent flow, mainly to prevent formation of bubbles in the solvent.

5.1.3 Pump, to ensure that the THF solvent flows at a constant rate, programmable over the range 0,1 ml/min to 2,0 ml/min with a high degree of precision.

5.1.4 Injector or **automatic sampler**, with a 100 mm³ (100 μl) injection loop.

5.1.5 Columns, packed with regular, rigid, porous spheres. The pore size on the column packing material is expressed either in Angström units ($1 \text{ Å} = 10^{-10} \text{ m}$), molecular weight range or size exclusion limit molecular weight. The packing spheres are made of cross-linked polystyrene, obtained by polymerization of styrene with divinylbenzene. The spheres shall have a nominal diameter in the range $3 \mu \text{m}$ to $10 \mu \text{m}$. The columns are generally 150 mm to 300 mm long. The pore size is selected depending on the range of molecular masses to be analysed.

NOTE 1 Four columns with pore sizes 10³ Å, 10⁴ Å, 10⁴ Å and 10⁵ Å were used when the repeatability and reproducibility of the method described in this International Standard were determined. The solvent first enters the column with the lowest porosity and exits from the column with the highest porosity. Other suitable columns can be used. These types of column are available from many suppliers.

NOTE 2 The recommended column characteristics are:

- linear range: 1 000 to 400 000 000;
- guaranteed column efficiency: > 2 400 plates for 150 mm long columns and 4 800 plates for 300 mm long columns; this is also known as a number of theoretical plates, *N*, as shown in Figure 1. The following formula is used to calculate the theoretical plate number:

$$N = 5,54 \times (V_{e}/W_{1/2})^{2}$$

where

*V*_e is the retention volume to the peak maximum;

 $W_{1/2}$ is the peak width at half height — using the same units for V_e and W.

Express the result as the number of theoretical plates of total column length.

— Column arrangement: two to four columns (150 mm to 300 mm long and 4,6 mm to 8,0 mm ID).

Key

1 injection

Figure 1 — Determination of the number of theoretical plates *N* by the half-height method

5.1.6 Detector.

Various types of detectors may be used, such as differential refractometer or UV.

5.1.7 Integrator, capable of integrating at least 150 time-slices during the elution of the polymer being analysed.

- 5.1.8 **Personal computer and software**, to avoid long and difficult manual calculations.
- **5.2 PTFE filters**, having a pore size of 0,50 μm or 0,45 μm.
- 5.3 10 cm³ (10 ml) and 250 mm³ (250 μ l) syringes.

5.4 Autocollector (optional), with glass vials.

5.5 Mixer.

6 Analytical conditions

Flow rate: 0,2 ml/min to 1,0 ml/min.

Injection volume: 100 mm³ (100 µl) of solution, or a quantity suitable for the volume of the column used.

The injection volume shall be matched to the set of columns used. The total injection volume shall not exceed 250 μ l. The concentration of the sample solution injected shall be 0,1 g/l to 5,0 g/l.

Column temperature: 40 °C - 45 °C.

7 Procedure

7.1 Solvent degassing

Degass 1 dm³ of solvent under vacuum and/or in an ultrasonic bath for about 30 min.

To obtain a constant baseline, degassing should preferably be done 12 h before use. From time to time, the columns should be flushed, for a period of 8 h, with THF solvent, degassed as specified in this subclause, to remove any peroxides left in the column. **PREVIEW**

If an automatic online degassing system is available, the degassing operation given in this subclause can be omitted.

<u>ISO 11344:2016</u>

7.2 Calibration https://standards.iteh.ai/catalog/standards/sist/fb97cbec-1413-4195-a075-

4689253cf16e/iso-11344-2016

7.2.1 Use polystyrene standards (<u>4.3</u>) dissolved in THF containing BHT solution (<u>4.2</u>) for calibration purposes. To ensure constant peak size, weigh out a different amount of each individual standard as a function of its molecular mass, for example 1 g/l [0,025 g in 25 cm³ of solution (<u>4.2</u>)] for molecular masses around 1 000 000, 5 g/l [0,125 g in 25 cm³ of solution (<u>4.2</u>)] for molecular masses lower than 30 000. The calibration plot shall cover the entire range of molecular masses present in the polymer being analysed.

7.2.2 Shake the solutions gently.

7.2.3 Filter each solution through a PTFE filter (5.2) attached to a 10 cm³ syringe.

NOTE The reference standard solutions can be kept in a refrigerator at 6 $^\circ C$ to 7 $^\circ C$ for a maximum of 3 months.

7.2.4 The calibration procedure described in <u>7.2.4.1</u> to <u>7.2.4.5</u> is given by way of example.

7.2.4.1 Prepare 11 solutions of polystyrene in accordance with <u>Table 3</u>.

Solution No.	Concentration	Actual molecular mass M	
Solution No.	g in 25 cm ³ of BHT solution (<u>4.2</u>)		
1	0,025	1 030 000	
2	0,025	770 000	
3	0,030	336 000	
4	0,050	210 000	
5	0,050	156 000	
6	0,075	66 000	
7	0,125	30 300	
8	0,125	22 000	
9	0,125	11 600	
10	0,125	7 000	
11	0,125	5 050	

Table 3 — Solutions of polystyrene reference standards

7.2.4.2 When using manual injection, draw off 250 mm³ (250 μ l) from each vial, flush the injection loop and then inject 100 μ l. Read off the retention time corresponding to the peak for each standard. With an automatic sampler, follow the manufacturer's instructions. Repeat calibration if necessary.

7.2.4.3 In the case of repeat, average the replicates retention times of BHT averaged over all the runs.

7.2.4.4 Plot the average retention time, in minutes, against the corresponding value of $log(M_i)$ for each standard and calculate the best-fit line (see Figure 2).

ISO 11344:2016

7.2.4.5 The correlation coefficient shall be higher than 0.999 5./If not, repeat the calibration procedure for the standards that are causing imperfect alignment, found by computing the difference between the certified (actual) molecular masses and the molecular masses calculated (see <u>Table 4</u>) using the third-degree polynomial representing the best-fit line in <u>Figure 2</u>.

For the data plotted in Figure 2, the best-fit line is given by the following third-degree polynomial:

 $\log(M_i) = 17,569\;426\;28 - 1,027\;363\;146\;t_i + 0,030\;450\;485\;t_i^2 - 0,000\;344\;616\;t_i^3$

For these data, the correlation coefficient is 0,999 53.

Actual molecular mass $M_{\rm c}$	Retention time t _i	Calculated molecular mass		
	min	Calculated molecular mass		
1 030 000	22,08	1 049 591		
770 000	22,89	749 228		
336 000	25,15	323 397		
210 000	26,15	231 316		
156 000	27,58	147 045		
66 000	30,18	66 955		
30 300	32,76	29 978		
22 000	33,68	22 039		
11 600	35,46	11 542		
7 000	36,64	7 163		
5 050	37.47	4 979		

Table 4 — Calibration data corresponding to plot in Figure 2

Key

- X retention time (min)
- Y $\log(M_i)$

7.3 Preparation of test solution

7.3.1 The test solution concentration specified in <u>7.3.2</u> is suitable for most circumstances, but may be varied depending on the actual polymer being tested, the molecular-mass range expected, the volumes of the columns, the type of detector and the volume of solution injected.

7.3.2 Place 0,075 g of the sample in a 50 cm³ graduated flask and add roughly 35 cm³ of filtered (see 7.2.3) THF containing BHT solution (4.2).

7.3.3 Agitate the solution gently on a shaker to ensure the polymer has dissolved completely and then make up to 50 cm³ with filtered THF containing BHT solution.

Shake the solution at room temperature to ensure complete dissolution and homogenization; in the case of samples with a mean molar mass of less than 700 000 g/mol, a magnetic stirrer may be used. The use