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1 Scope

The present document isintended to study:

a) communication models that strike a suitable trade-off between electromagnetic accuracy and simplicity for
performance evaluation and optimization at different frequency bands;

b) channel models (deterministic and statistical) that include path-loss and multipath propagation effects, as well
as the impact of interference for application to different frequency bands;

c) channel estimation, including reference scenarios, estimation methods, and system designs; and

d) key performance indicators and the methodology for evaluating the performance of RIS for application to
wireless communications, including the coexistence between different network operators, and for fairly
comparing different transmission techniques, communication protocols, and network deployments.

2 References

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinksincluded in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] ETSI GR RIS001 (V1.1.1): "Reconfigurable Intelligent Surfaces (RIS); Use Cases, Deployment
Scenarios and Requirements”.

[i.2] ETSI TR 138 901 (V16.1.0): "5G; Study on channel model for frequencies from 0.5 to 100 GHz
(3GPP TR 38.901 version 16.1.0 Release 16)".

[1.3] Recommendation ITU-R SM.329: "Unwanted emissions in the spurious domain".

[i.4] M. Di Renzo, F. H. Danufane and S. Tretyakov: "Communication Models for Reconfigurable

Intelligent Surfaces: From Surface Electromagnetics to Wireless Networks Optimization™, in
Proceedings of the IEEE™, 2022, doi: 10.1109/JPROC.2022.3195536.

[i.5] G. Gradoni and M. Di Renzo: "End-to-End Mutual Coupling Aware Communication Model for
Reconfigurable Intelligent Surfaces: An Electromagnetic-Compliant Approach Based on Mutual
Impedances', in IEEE™ Wireless Communications Letters, vol. 10, no. 5, pp. 938-942, May 2021,
doi: 10.1109/L WC.2021.3050826.

[i.6] W. Tang et a.: "Wireless communications with reconfigurable intelligent surface: Path loss
modeling and experimental measurement”, IEEE™ Trans. Wireless Commun., vol. 20, no. 1,
pp. 421-439, January 2021.

[1.7] W. Tang et a.: "Path loss modeling and measurements for reconfigurable intelligent surfacesin
the millimeter-wave frequency band", IEEE™ Transactions on Communications 70, no. 9 (2022):
6259-6276.
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3.1

Definition of terms, symbols and abbreviations

Terms

For the purposes of the present document, the terms givenin ETSI GR RIS 001 [i.1] apply.

3.2

Void.

Symbols
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3.3

For the purposes of the present document, the following abbreviations apply:

2D

3D
AOA
AoD
AWGN
BLER
BS
CDL
CDS
Csl
DFT
DFT-S
DL
DMRS
DoA
EIRP
EM
EMC
EMF
oNB
HARQ
HITRAN
HMIMOS
LLS
LOS
LS
MAC
MCL
MCS
MIL
MIMO
MISO
MPL
MU
NB
NCDS
NLOS
NR
nRB
nSC
NW
o2l
020
OFDM
PDSCH
PHY
PUSCH
RB

RF
RIS
RSE
RTT
RX
SAR
SDU
SIMO
SINR

Abbreviations

2 Dimensiona

3 Dimensional

Angle of Arriva

Angle of Departure

Additive White Gaussian Noise
Block Error Rate

Base Station

Clustered Delay Line

Coherent Demodulation Scheme
Channel State Information
Discrete Fourier Transform
Discrete Fourier Transform Spread
Downlink

Demodulation Reference Signal
Direction of Arrival

Effective | sotropic Radiated Power
Electromagnetic

Electromagnetic Compatibility
Electromagnetic Field

g Node B

Hybrid Automatic Repeat Request
High resolution Transmission
Holographic Multiple Input Multiple Output Surface
Link-Level Simulator

Line Of Sight

Least Square

Medium Access Control

Minimum Coupling Loss
Modulation and Coding Scheme
Hardware link budget
Multiple-Input Multiple-Output
Multiple-Input Single-Output
Mechanically Pumped fluid Loop
Multi User

Node B

Non Coherent Demodulation Scheme
Non Line Of Sight

New Radio

number of Resource Block

number of Sub-Carriers per resource block
Network

Outdoor-to-1ndoor
Outdoor-to-Outdoor

Orthogonal Frequency-Division Multiplexing
Physical Downlink Shared Channel
Physical layer

Physical Uplink Shared Channel
Resource Block

Radio Frequency

Reconfigurable Intelligent Surfaces
Radiated Spurious Emission
Round-Trip Time

Receiver

Specific Absorption Rate

Service Data Unit

Single-Input Multiple-Output
Signal-to-I nterference-Noise Ratio

ETSI

ETSI GR RIS 003 V1.1.1 (2023-06)



9 ETSI GR RIS 003 V1.1.1 (2023-06)

SISO Single-Input Single-Output

Spatial Modulation

SNR Signal-to-Noise Ratio
sV Saleh-Vaenzuela
TBA To Be Added
TdoA Time difference of Arrival
ToA Time of Arrival
TRP Total Radiated Power
TRxP Transmission and Reception Point
TxRU Transmit Radio Unit
UE User Equipment
UL Uplink
ULA Uniform Linear Array
UMa Urban Macro
UMi Urban Micro
us United States
WB Wide-Band
4 Introduction
4.1 General Description

In this clause, the definition of RIS and relevant scenarios are described.
NOTE: The descriptions provided in the present document are aligned with thosein ETSI GR RIS 001 [i.1].

4.2

Definition of RIS

Broadly an RIS is defined as follows:

4.3

Itisasurface, i.e. it isnot avolumetric material, in order to reduce the implementation complexity, the losses,
etc. while still being able to fully control the el ectromagnetic waves.

Itisan engineered (or intelligent) surface, i.e. it can realize functions that a non-engineered surface (i.e. a
metal plate) cannot realize.

It isreconfigurable, i.e. its response can be adapted over time based on the network conditions. The

reconfigurability encompasses multiple functions including controlled reflection, refraction, scattering,
modulation, etc.

Types of RIS

An RIS can be defined in terms of the single or multiple functionsthat it can realize:

Reflecting surfaces: Thisisan RIS that is capable of modifying the angle of reflection of an incident wave.

Refracting surfaces: Thisisan RIS that is capable of modifying the angle of refraction (transmission) of an
incident wave.

Joint reflecting and refracting surfaces: Thisisan RIS that is capable of simultaneously modifying the
angle of reflection and refraction of an incident wave.

Transmitting or information surfaces: Thisisan RIS that is capable of encoding data and to realize single-
RF (single-stream or multi-stream) transmitters. Examplesinclude RIS that encode data onto the activations
patterns of the unit cells or the synthetized radiation patterns.

Surface for ambient backscattering: Thisisan RIS that can simultaneoudly reflect or refract the incident
waves and simultaneously modulate data onto the reflected or refracted wave.

ETSI
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Surfaced for tuned randomness; Thisisan RIS that is configured in order to increase the scattering in a
given area.

Absorbing surfaces: Thisisan RIS that is configured to minimize the scattered field.

Communication and sensing surfaces: Thisis an RIS with integrated communication and sensing
capahilities, i.e. a surface that can simultaneously reflect a wave and detect the presence of objects.

Deployment scenarios

RIS can be utilized in different scenarios, including the following.

Enhanced connectivity and reliability

Connectivity and reliability boosted by asingle RIS.

Connectivity and reliability boosted by individually controlled multiple RIS.
Connectivity and reliability enabled by multiple RIS.

Connectivity and reliability boosted by a single multitenant RIS.

RIS-aided mobile edge computing.

Enhanced localization and sensing

Unambiguous localization under favourable problem geometry with a minimal number of base stations.
Non Line Of Sight (LOS) mitigation for better service coverage and continuity in far-field conditions.
Non LOS mitigation for better service coverage and continuity in near-field conditions.

On-demand multi-user and multi-accuracy service provision.

Opportunistic detection/sensing of passive objects through multi-link radio activity monitoring.
RIS-assisted search-and-rescue operations in emergency scenarios.

Localization without BSs using asingle or multiple RIS.

RIS-aided radio environment mapping for fingerprinting localization.

Radar localization/detection of passive target(s) with hybrid RIS.

Enhanced sustainability and security

Deployments of RIS to increase the energy efficiency and reduce the power consumption.

Deployments of RIS to increase security.
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5 Models for RIS

5.1 Models for communications

51.1 General description

Three main communication models for RIS can be adopted [i.4]:
. Locally periodic discrete model.
o Mutually-coupled antenna model.

o Inhomogeneous sheets of surface impedance model.

5.1.2 Locally periodic discrete model

A widely used model for RIS isbased on alocally periodic design, in which periodic boundary conditions are applied at
the unit cell level. Accordingly, each RIS reconfigurable element is associated with a set of complex-valued coefficients
(the RIS alphabet). Each element of the al phabet is obtained by appropriately configuring the electronic circuits of the
RIS reconfigurable element. For ease of description, it is assumed that the RIS operates as a reflecting surface. From the
physical standpoint, therefore, the complex-valued coefficient has the meaning of areflection coefficient, i.e. theratio
between the reflected electric field and the incident electric field, of an infinite RIS whose elements are all configured to
the same state. Therefore, the corresponding equivalent structure is a homogeneous surface that realizes specular
reflection. According to this definition, each RIS reconfigurable element is characterized by means of locally periodic
boundary conditions, and, since an RIS is not endowed with power amplifiers, the reflection coefficients have an
amplitude that is, by definition, less than one. However, this neither necessarily implies that the amplitude is a constant
independent of the phase nor that the amplitude and the phase can be optimized independently of one another.

5.1.3 Mutually-coupled antenna model

To account for the mutual coupling among closely-spaced RIS elements, a model based on loaded RIS elements
illustrated in Figure 1 can be used.

Figure 1. Mutually coupled antenna model

Transmitter

_.__._
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The model resembles a conventional single transmitter-receiver pair Multiple-1nput Multiple-Output (MIMO)
communication link in the presence of an RIS. The transmitter and the receiver are equipped with multiple-antenna
elements. For ease of representation, the antenna elements are assumed to be thin wire dipoles. The model can be
utilized for application to radiating elements different from thin wire dipoles. Each antenna element at the transmitter is
driven by avoltage generator that models the transmit feed line, and each antenna element at the receiver is connected
to aload impedance that mimics the receive electronic circuit. The transmission between the transmitter and the
receiver is assisted by an RIS, which comprises several scattering elements that are independently configurable (by an
external controller) through tuneable impedances. The end-to-end transfer function that accounts for the scattering from
the RIS can be formulated as follows[i.5]:

_ -1 e -1
H=(,+ l|’r,rzr t— ll’r,t(‘l’t,t + Zt) ll’t,rzr 1) 1lpr,t(l|,t,t + Zt)

where:
Yo =2y — Zt,s(Zs,s + Ztun)_lzs,t
Wi = Ze, — Zos(Zos + Zon)  Zsy
Wpo = Zrp = Zys(Zss + Zoun) Zsy

-1
lpr,r = Zr,r - Zr,s (Zs,s + Ztun) Zs,r

Each term of the equations can be computed either numerically or in closed-form [i.5]. The proposed model is
conveniently formulated in a MIMO-like form, which enables one to use optimization methods for optimizing the
tenable loads connected to each scattering element.

In the far-field of each scattering element of the transmitter, receiver, and RIS, the following simplified model can be
used [i.5]:

18— -1 -1
Hr,t ~ (ILO + Zr,rZr 1) 1(Zt,t + Zt) (Zr,t - Zr,s (Zs,s + Ztun) Zs,t)

This simplified model has wide applicability in wireless communications because it is expected to operate in the
far-field of each scattering element, but not in the far-field of the entire surface.

5.1.4 Inhomogeneous sheets of surface impedance

More precisely, an RIS whose unit cells have sizes and inter-distances much smaller than the wavelength is
homogenizable and can be modeled as a continuous surface sheet through appropriate surface functions, i.e. surface
impedances. This modeling approach is not dissimilar from the characterization of bulk (three-dimensional)
metamaterials, which are usually represented through effective permittivity and permeability functions that determine
the wave phenomena based on Maxwell's equations. The only difference is that a metasurface is better modeled by
effective surface parameters, which manifest themselves in electromagnetic problems that are formulated as effective
boundary conditions. These boundary conditions can be expressed in terms of surface polarizabilities, surface
susceptibilities, or surface impedances (or admittances). Under these assumptions, an RIS can be modeled as an
inhomogeneous sheet of polarizable particles (the unit cells) that is characterized by an electric surface impedance and a
magnetic surface admittance, which, for general wave transformations, are dyadic tensors. These two dyadic tensors
constitute the macroscopic homogenized model of an RIS. Once the homogenized and continuous el ectric surface
impedance and magnetic surface admittance are obtained based on the desired wave transformations, the microscopic
structure and physical implementation of the RIS in terms of unit cells are obtained. Generally speaking, once the
macroscopic surface impedance and admittance are determined, appropriate geometric arrangements of sub-wavelength
unit cells and the associated tuning circuits that exhibit the corresponding el ectric and magnetic response are
characterized by, typically, using full-wave electromagnetic simulations.
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5.2 Models for radio localization and sensing

521 Scenarios

5211 Localization scenarios

With cellular localization, the User Equipment (UE) location can be estimated based on a variety of measurements from
the received signal, including the signal strength, Time of Arrival (ToA), Round-Trip Time (RTT), Angle of Arrival
(AoA) and Angle of Departure (AoD). The scenarios can be categorized as SISO localization, M1SO localization,

SIMO locdization, and MIMO localization as shown in Figure 2, where the symbols 7, ¢, and 6 indicate ToAs, AoDs,
and AOoAS, respectively.

X I RIS, I BS, WB I RIS, 0 BSs, WB 2RISs, 1 BS,NB
(a) SISO

T~ /El ,/’&;

1 >
5 A 01{%

I RIS, / BS,NB I RIS, 1 BS,NB I RIS, I BS,NB
(b) MISO (c) SIMO (d) MIMO

Figure 2: Localization scenarios

5.2.1.2 SISO localization
In this scenario, the Base Station (BS) and UE are both equipped with a single antenna.

In the SISO system with 1 RIS and 1 BS, Wide-Band (WB) pilots should be used to measure the ToAs for the direct
(i.e. the path BS-UE) and the reflected (i.e. the path BS-RIS-UE) paths, from which the resulting TdoA can be can
calculated and so the corresponding hyperboloid in 3D space. By using different RIS phase profiles at different
transmission times, the AoD from the RIS to the UE can be estimated, which geometrically trandatesto a half-line.
Therefore, the UE position can be calculated via the intersection between such half-line and the abovementioned
hyperboloid.

In the SISO system with 2 (more than 1) RIS and 1 BS, UE positioning even with NB signalling can be performed,
which does not allow ToA estimation. Indeed, the UE position can be estimated via the intersection of the two half-lines
corresponding to the AoDs from the RIS. The direct BS-UE path does not carry any position information, thus
localization can be performed even when the direct path is blocked.

In the SISO system with 1 RIS in the absence of aBS, the RTT and the AoD from the RIS to the UE can be measured.
Geometrically, they respectively correspond to a sphere centered in the RIS and a half-line originated in the RIS, whose
intersection returns the UE position estimate.

5.2.13 MISO localization

In this scenario, the BS is equipped with multiple antennas while the UE is with a single antenna. The UE position can
be estimated by intersecting the two half-lines corresponding to the two AoDs from the BS and the RIS.
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5214 SIMO localization

In this scenario, the UE is equipped with multiple antennas while the BS is with a single antenna. Two AoAs and one
AoD from the RIS can be measured. Using the two AoAs, the user on (part of) a spindle Torus can be located, whose
intersection with the line corresponding the AoD locates the UE. Then the UE orientation can be estimated via the two
AOAsS.

5215 MIMO localization

In this scenario, both the BS and the UE are equipped with multiple antennas. The UE position can be estimated viathe
two AoDs (by intersecting the two corresponding half-lines) while the UE orientation can be derived from the two
AOAS.

5216 RIS-aided and RIS-standalone

In 3GPP, location (or position) can be estimated from NW (i.e. gNB, TRP, etc.) and/or UE side. For instance, timing
difference based (i.e. DL/UL TdoA) and angular based (i.e. DL/UL DoA, A0A, etc.) algorithms are supported in 3GPP
standards. When RIS isinvolved in the localization, two RIS localization scenarios can be considered:

° RIS-aided localization.
° RIS-standalone localization.

RIS-aided localization refers to the case where RIS can assist NW and UE for location estimation as shown in Figure 3
(see scenario (a)). RIS-standalone localization refers to the case where RIS and UE are mgjorly involved for location
estimation but NW can still assist the localization without the awareness of UE as shown in Figure 3 (see scenario (b)).

_1 Network

gNB/TRP

UE

obstructor

(a) RIS-assist localization (b) RIS-standalone localization

Figure 3: RIS localization scenarios (a) RIS-assisted (b) RIS-standalone

Based on the RIS deployment, RIS localization can be categorized in terms of the following factors for different
scenarios, i.e. RIS-aided and RIS-standalone |ocalization:

e With or without the direct path between UE and NW.

. Operating regime: far-field or near-field.

. Freguency range: sub-6 GHz or mmWave (i.e. FR2, FR2+, etc.).

e Antenna setting between NW and UE: SISO, SIMO, MISO, and MIMO.
. RIS type: passive, semi-active, or active.

o RIS control setting: e.g. the number of RIS elements used for the localization.
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There are three channel paths in the RIS-aided communication (BS-RIS-UE) which can be categorized asthe BS-RIS
path, the RIS-UE path, and (BS-UE) path (or direct path). Therefore, when considering RIS localization, it needsto be
further analysed whether there exists adirect path (i.e. BS-UE) or not. This is because when there is a direct path, the
UE localization may reuse existing position techniques or can be enhanced with RIS assistance. In addition, operating
regimes such as far-field or near-field may have nominal impact factors for the accuracy of the location estimation.
Also, RIS typeinterms of semi-active or active RIS, the active RIS and the number of elements used for localization
could have an impact for location estimation. Finally, antenna setting between NW and UE can be specified as one of
the considered factors for RIS-aided localization. For the standalone RIS localization considered, wherein the direct
path is either completely blocked or severely affected and hence may not be utilized for the purpose of localization.

52.2 Near-field

5.2.2.1 Near-field regimes

For localization purposes, sparse parametric models are often used, where the channel is represented viaafew
geometric components. Figure 4 illustrates a one-ray SISO system including one RIS, where both the BS and UE arein
the near field of the RIS. In this case, the received signal in the downlink can be calculated as a sum of individual rays
reflected from each RIS element at the UE location.

NOTE: The received signal in the downlink can be expressed as function of the UE position.
Figure 4: The near-field regimes of the RIS-enabled sighal propagation with respect to the RIS

Assume there are M RIS while each RIS consists of L phase-tuneable meta-atom elements and is implemented with the
single-RX-RF architecture. The user broadcasts a pilot symbol swith constant transmit power P. This symbol is
received T times by each RIS, where during each repetition a different RIS phase profile is used. In the presence of C,,
distinct channel paths, the observation during the t-th reception dlot (t = 1, 2,..., T) at the mth RISs RX RF chain output
can be mathematically expressed as follows:

— 2 H Cm H
ym,t - um,t Zc=1 hm,c (x(pm,l' pu)s + um,twm,t

where h,, . = m exp(jo,) Ve = 1,2, ..., C, includes the gain of the c-th signal propagation path with parameter
Py, . denoting the free-space pathloss. Without loss of generality, the ¢ = 1 channel path represents the Line Of Sight
(LOS), hence, its pathloss P, depends on the Euclidean distance 7,1 = ||pm — Pull With p,, denoting the position of
m-th RIS, each distance r;, . for c> 2 is defined similarly considering the position of the corresponding scatterer. In the
expression for h,, ., ¢, ~U(0,2m) denotes a global phase offset accounting for the lack of phase synchronization
between the user and the m-th RIS. The vector u,,, € C*** isthet-th phase configuration of the m-th RIS. The vector
W, € CE*1 represents the Additive White Gaussian Noise (AWGN). Finally, the spatial response vector a(po,;, Pu) €
CL*1 of the user transmitted signal via multipath propagation given for I= 1, 2,..., L isasfollows:

[«(Puns. Pu)], = exp (2 s = pull)

with 4 as the signal wavelength.
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