TECHNICAL ISO/IECTS
SPECIFICATION 19216

First edition
2018-04

Programming Languages — C++
Extensions for Networking

Langages de programmation — Extensions C++ pour mise en réseau

Reference number
ISO/IEC TS 19216:2018(E)

© ISO/IEC 2018

ISO/IEC TS 19216:2018(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or [SO’s member body in the country of the requester.

ISO copyright office

CP 401 o Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

ii © ISO/IEC 2018 - All rights reserved

ISO/IEC TS 19216:2018(E)

Contents

Foreword
1 Scope
2 Normative references
3 Terms and definitions

4 General Principles
4.1 Conformance e
4.2 Acknowledgments

5 Namespaces and headers
6 Future plans (Informative)
7 Feature test macros (Informative)

8 Method of description (Informative)
8.1 Structure of eachi ¢latise @700 A NI A FREN I S/ P /oo
8.2 Other conventions e

9 Error reporting
9.1 Synchronous operations
9.2 Asynchronous operations . . . JoWAEL IS 192102006 0000000000 oo
9.3 Error conditighy standards.fen.avcafalog/standards/sisy56200%8a-/0ab-46a0-2a/1-.
9.4 Suppression of signals . ./25b0YcU/0b1s0-1ec-1-19216-2008 0 oo oo oo

10 Library summary

11 Convenience header
11.1 Header <experimental/met> Synopsis

12 Forward declarations
12.1 Header <experimental/metfwd> synopsis

13 Asynchronous model
13.1 Header <experimental/executor> Synopsis« . . . e
13.2 Requirements L e e e
13.3 Class template async_result
13.4 Class template async_completion
13.5 Class template associated_allocator v v v it
13.6 Function get_associated_allocator
13.7 Class execution_context e e e
13.8 Class execution_context::service i e
13.9 Class template iS_eXeCutor v o i it e e e e e
13.10 Executor argument tag e
13.11 uses_executor e e e e e e

©ISO/IEC 2018 — All rights reserved

vi

10
10
10

11

13
13

14
14

16
16
19
27
28
29
30
30
32
33
33
34

iii

ISO/IEC TS 19216:2018(E)

13.12
13.13
13.14
13.15
13.16
13.17
13.18
13.19
13.20
13.21
13.22
13.23
13.24
13.25
13.26
13.27

14 Basic
14.1
14.2
14.3

Class template associated_executor i
Function get_associated_executor e
Class template executor_bindero
Function bind_executor e
Class template executor_work_guard o i i
Function make_work_guard e
Class system_executor o v i i it
Class system_contexto v v v v i i it
Class bad_exXeCutor v v v v it e e e e e e e e e
Class eXeCutor v v it e
Function dispatch e
Function post L
Function defer e
Class template strand Lo
Class template use_future_t e
Partial specialization of async_result for packaged_task

I/0 services

Header <experimental/io_context> Synopsis v v v v v it e e
Class 10_context v v i i e e e e e e
Class io_context::executor_type

15 Timers

15.1
15.2
15.3
15.4

Header <experimental/timer> synopsist. FREN IO ERT N/ T WL/« o o v o oo L
Requirements . & .70 S S T T
Class template wait_traitsd o sn s eragorie cdmbe add e o o v v v e e
Class template basic_waitable_timer2,

16 Buffers

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14

Header <experimental/buffer>isynopsisands/sist/56205982-78db-40a0-9a71-.
Requirements725b00c0700] so-lee-ts-1 Q2062008 o Lo oo o oo
Error codes
Class mutable_buffer e
Class const_buffer e e
Buffer type traits
Buffer sequence access e e e e
Function buffer_size L
Function buffer_copy e
Buffer arithmetic
Buffer creation functions oL o
Class template dynamic_vector_buffer
Class template dynamic_string_buffer
Dynamic buffer creation functions L

17 Buffer-oriented streams

17.1
17.2
17.3
174
17.5
17.6

Requirements e
Class transfer_all i i i ittt e e e e e e
Class transfer_at_least o i i i i i e e
Class transfer_exactly o v v v v it e
Synchronous read operations
Asynchronous read operations L

©ISO/IEC 2018 — All rights reserved

50
51
52
56
59

61
61
61
65

67
67
67
68
69

73
73
78
82
82
83
84
85
85
85
86
86
88
89
91

92
92
94
95
95
96
98

iv

ISO/IEC TS 19216:2018(E)

17.7 Synchronous write operations
17.8 Asynchronous write operations
17.9 Synchronous delimited read operations
17.10 Asynchronous delimited read operations
18 Sockets
18.1 Header <experimental/socket> synopsis
18.2 Requirements oo
18.3 Errorcodes
18.4 Class socket_base
185 Socket options o
18.6 Class template basic_socket
18.7 Class template basic_datagram_socket
18.8 Class template basic_stream_socket
18.9 Class template basic_socket_acceptor

19 Socket iostreams

19.1
19.2

Class template basic_socket_streambuf
Class template basic_socket_iostream

20 Socket algorithms

20.1
20.2

Synchronous connect operations
Asynchronous connect operations

21 Internet protocol

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9
21.10
21.11
21.12
21.13
21.14
21.15
21.16
21.17
21.18
21.19
21.20
21.21

Index

Header <experimental/internet> Synopsis . . . s . . .oy .
Requirements L0 LERIAREER L LD e R Dot 1,
Errorcodes
Class ip::address [SOALCTIS 192162018 « . ..
Class ip: :address ¥4 s ich aileaialoe/standards/sist/5620508a- 78
Class ip::address_v6 . .795560c076h] fso-ice o] 00162042 -
Class ip::bad_address_cast
Hash support
Class template ip: :basic_address_iterator specializations
Class template ip: :basic_address_range specializations . .
Class template ip::network_v4.
Class template ip::network_v6.
Class template ip::basic_endpoint
Class template ip::basic_resolver_entry
Class template ip: :basic_resolver_results
Class ip::resolver_base
Class template ip::basic_resolver
Host name functions
Class ip::ttep o . o oo v i
Class ip::udp v v v v v vt e
Internet socket options,

Index of library names

Index of implementation-defined behavior

©ISO/IEC 2018 — All rights reserved

104
104
106
115
116
118
121
131
139
145

157
157
161

164
164
165

167
167
171
173
174
177
181
186
187
187
188
190
193
195
199
201
204
205
211
211
212
214

219

221

227

ISO/IEC TS 19216:2018(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members
of ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types
of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent
rights identified during the development of the document will be in the Introduction and/or on the ISO list
of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not

constitute an endorsement:

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and ex-
pressions related to conformity assé¢ssment;) as syellras: informationyabout ISO’s adherence to the World
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL:
www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee
SC 22, Programming languages, their,environments. and. system software interfaces.

Foreword ©ISO/IEC 2018 — All rights reserved vi

ISO/IEC TS 19216:2018(E)

1 Scope [scope]

This document describes extensions to the C++ Standard Library. This document specifies requirements for
implementations of an interface that computer programs written in the C++ programming language may use
to perform operations related to networking, such as operations involving sockets, timers, buffer management,
host name resolution and internet protocols. This document is applicable to information technology systems
that can perform network operations, such as those with operating systems that conform to the POSIX
interface. This document is applicable only to vendors who wish to provide the interface it describes.

Scope ©ISO/IEC 2018 — All rights reserved 1

(1.1
(1.2)
(1.3)

(1.4)

ISO/IEC TS 19216:2018(E)

2 Normative references [references]

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

— ISO/IEC 14882:2014, Programming languages — C++
— ISO/IEC TS 19568:2015, C++ Extensions for Library Fundamentals
— ISO/IEC 9945:2009, Information Technology — Portable Operating System Interface (POSIX)

— ISO/IEC 2382-1:1993, Information technology — Vocabulary

The programming language and library described in ISO/IEC 14882 is herein called the C++ Standard.
References to clauses within the C++ Standard are written as “C++ 2014, Clause 17”. The operating system
interface described in ISO/TEC 9945 is herein called POSIX.

This document mentions commercially available operating systems for purposes of exposition. POSIX®) is a
registered trademark of The IEEE. Windows®) is a registered trademark of Microsoft Corporation. This
information is given for the convenience of users of this document and does not constitute an endorsement by
ISO or IEC of these products.

Unless otherwise specified, the whole of the|G++/Standard’s Library introduction (C++ 2014, Clause 17) is
included into this document by reference.

Normative references ©ISO/IEC 2018 — All rights reserved 2

2.1)

(2.2)

ISO/IEC TS 19216:2018(E)

3 Terms and definitions [defs]

For the purposes of this document, the terms and definitions given in ISO/IEC 14882:2014, ISO/IEC
2382-1:1993, and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— IEC Electropedia: available at http://www.electropedia.org/

— ISO Oanline browsing platform: available at http://www.iso.org/obp

Terms that are used only in a small portion of this document are defined where they are used and italicized
where they are defined.

3.1 [defs.host.byte.order]
host byte order
the arrangement of bytes in any integer type when using a specific machine architecture

[SOURCE: ISO/IEC 9945:2009, 3.193]

3.2 [defs.net.byte.order]
network byte order

the way of representing any integer type such that, when transmitted over a network via a network endpoint,
the int type is transmitted as an apprepriate nlumber of o¢tets with, the most significant octet first, followed
by any other octets in descending order of significance

[SOURCE: ISO/IEC 9945:2009, 3.237]

3.3 [defs.sync.op]
synchronous operation
operation where control is not returned until the operation completes

3.4 [defs.async.op]
asynchronous operation
operation where control is returned immediately without waiting for the operation to complete

[Note 1 to entry: Multiple asynchronous operations may be executed concurrently. — end note|

§34 ©ISO/IEC 2018 — All rights reserved 3

ISO/IEC TS 19216:2018(E)

4 General Principles [general]

4.1 Conformance [conformance]

Conformance is specified in terms of behavior. Ideal behavior is not always implementable, so the conformance
subclauses take that into account.

4.1.1 POSIX conformance [conformance.9945]

Some behavior is specified by reference to POSIX. How such behavior is actually implemented is unspecified.

[Note: This constitutes an “as if” rule allowing implementations to call native operating system or other
APIs. — end note|

Implementations are encouraged to provide such behavior as it is defined by POSIX. Implementations shall
document any behavior that differs from the behavior defined by POSIX. Implementations that do not support
exact POSIX behavior are encouraged to provide behavior as close to POSIX behavior as is reasonable
given the limitations of actual operating systems and file systems. If an implementation cannot provide any
reasonable behavior, the implementation shall report an error as specified in Error Reporting (9).

[Note: This allows users to rely on an exception being thrown or an error code being set when an implemen-
tation cannot provide any reasonable behavior. — end note]

Implementations are not required to-previde behavior that-is noet supported by a particular operating system.

4.1.2 Conditionally-supported features [conformance.conditional]

This document defines conditionally-supported features, in the form of additional member functions on types
that satisfy Protocol (18.2.6), Endpoint (18.2.4), SettableSocketOption (18.2.9), GettableSocketOption (18.2.8)
or IoControlCommand (18.2.12) requirements.

[Note: This is so that, when the additional member functions are available, C++ programs can extend the
library to add support for other protocols and sockéet options.” — end note |

For the purposes of this document, implementations that provide all of the additional member functions are
known as extensible implementations.

[Note: Implementations are encouraged to provide the additional member functions, where possible. It is
intended that POSIX and Windows implementations will provide them. — end note|

4.2 Acknowledgments [intro.ack]
The design of this specification is based, in part, on the Asio library written by Christopher Kohlhoff.

§4.2 ©ISO/IEC 2018 — All rights reserved 4

ISO/IEC TS 19216:2018(E)

5 Namespaces and headers [namespaces|

The components described in this document are experimental and not part of the C++ standard library.
All components described in this document are declared in namespace std: :experimental: :net::vl or a
sub-namespace thereof unless otherwise specified. The headers described in this document shall import the
contents of std::experimental::net::v1 into std::experimental: :net as if by:

namespace std {
namespace experimental {
namespace net {
inline namespace v1 {}
}
}
}

Unless otherwise specified, references to other entities described in this document are assumed to be qualified
with std::experimental::net::v1l::, references to entities described in the C++ standard are assumed to
be qualified with std: :, and references to entities described in C++ Extensions for Library Fundamentals are
assumed to be qualified with std::experimental::fundamentals_v2::.

Namespaces and headers ©ISO/IEC 2018 — All rights reserved 5

ISO/IEC TS 19216:2018(E)

6 Future plans (Informative) [plans]

This clause describes tentative plans for future versions of this document and plans for moving content into
future versions of the C++ Standard.

The C++ committee may release new versions of this document, containing networking library extensions
we hope to add to a near-future version of the C++ Standard. Future versions will define their contents
in std::experimental: :net::v2, std::experimental: :net: :v3, etc., with the most recent implemented
version inlined into std: :experimental: :net.

When an extension defined in this or a future version of this document represents enough existing practice, it
will be moved into the next version of the C++ Standard by replacing the experimental: :net::vN segment
of its namespace with net, and by removing the experimental/ prefix from its header’s path.

Future plans (Informative) ©ISO/IEC 2018 — All rights reserved 6

ISO/IEC TS 19216:2018(E)

7 Feature test macros (Informative)
[feature.test]

These macros allow users to determine which version of this document is supported by the headers defined
by the specification. All headers in this document shall define the __cpp_lib_experimental_net feature
test macro in Table 1.

If an implementation supplies all of the conditionally-supported features specified in 4.1.2, all headers in this
document shall additionally define the __cpp_lib_experimental_net_extensible feature test macro.

Table 1 — Feature-test macro(s)

‘ Macro name Value ‘

__cpp_lib_experimental_net 201707
_cpp_lib_experimental_net_extensible 201707

Feature test macros (Informative) (© ISO/IEC 2018 — All rights reserved 7

(1.1)

ISO/IEC TS 19216:2018(E)

8 Method of description (Informative)
|[description]

This subclause describes the conventions used to specify this document, in addition to those conventions
specified in C++ 2014, 17.5.
8.1 Structure of each clause [structure]

8.1.1 Detailed specifications [structure.specifications]

In addition to the elements defined in C++ 2014, 17.5.1.4, descriptions of function semantics contain the
following elements (as appropriate):

— Completion signature: if the function initiates an asynchronous operation, specifies the signature of a
completion handler used to receive the result of the operation.

8.2 Other conventions [conventions]

8.2.1 Nested classes [nested.class]

Several classes defined in this document are nested classes. For a specified nested class A: :B, an implementation
is permitted to define A: :B as a synonym for a class with equivalent functionality to class A: :B. [Note: When
A::Bis a synonym for another type A provides a/nested.type B, to.emulate thelinjected class name. — end
note]

§8.2.1 ©ISO/IEC 2018 — All rights reserved 8

(1.1)

(1.2)

2.1)

(2.2)

(3.1)

ISO/IEC TS 19216:2018(E)

9 Error reporting lerr.report]

9.1 Synchronous operations [err.report.sync]

Most synchronous network library functions provide two overloads, one that throws an exception to report
system errors, and another that sets an error_code (C++ 2014, 19.5).

[Note: This supports two common use cases:

— Uses where system errors are truly exceptional and indicate a serious failure. Throwing an exception is
the most appropriate response.

— Uses where system errors are routine and do not necessarily represent failure. Returning an error code
is the most appropriate response. This allows application specific error handling, including simply
ignoring the error.

— end note]
Functions not having an argument of type error_code& report errors as follows, unless otherwise specified:
— When a call by the implementation to an operating system or other underlying API results in an error
that prevents the function from meeting its specifications, the function exits via an exception of a type
that would match a handler of type system_error.
— Destructors throw nothing.

Functions having an argument of typéierzror (code& eportietiots asfollows, unless otherwise specified:

— If a call by the implementation to an operating system or other underlying API results in an error
that prevents the function from meéetingits specifications, the error_code& argument ec is set as
appropriate for thesspecificrerron: Otherwise, the leciargument is/set,suech,that|!ec is true.

Where a function is specified as two overloads, with‘and without an argument of type error_code&:
R f(A1 al, 42 a2, ..., AN aN);
R f(41 al, A2 a2, ..., AN aN, error_code& ec);

then, when R is non-void, the effects of the first overload are as if:

error_code ec;

R r(f(al, a2, ..., aN, ec));
if (ec) throw system_error(ec, S);
return r;

otherwise, when R is void, the effects of the first overload are as if:

error_code ec;
f(al, a2, ..., aN, ec);
if (ec) throw system_error(ec, S);

except that the type thrown may differ as specified above. S is an NTBS indicating where the exception was
thrown. [Note: A possible value for S is __func__. — end note]

For both overloads, failure to allocate storage is reported by throwing an exception as described in the C++
standard (C++ 2014, 17.6.5.12).

In this document, when a type requirement is specified using two function call expressions f, with and without
an argument ec of type error_code:

§9.1 ©ISO/IEC 2018 — All rights reserved 9

	×çâ×""\2ò�õTÆät�a<">9ÃãÀŁd8_·Æ¦4&oý�ªƒ��¯=eRw“ﬂj¸¸¨Û~W¥N—èÕü†Cç®$R+ñ�-hÏ˛ïò÷ÌÏ��ÅúNÕ¶Ð‚Ê{Æ$�

