TECHNICAL REPORT

First edition 2021-12

Road vehicles — Injury risk curves for the THOR dummy

Véhicules routiers — Courbe de risques de blessures pour mannequin THOR

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/TR 19222:2021

https://standards.iteh.ai/catalog/standards/iso/2f00dc22-f94e-49ca-bb34-5cb9aa4d9cf7/iso-tr-19222-2021

Reference number ISO/TR 19222:2021(E)

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/TR 19222:2021

https://standards.iteh.ai/catalog/standards/iso/2f00dc22-f94e-49ca-bb34-5cb9aa4d9cf7/iso-tr-19222-2021

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents

Page

Fore	eword		iv		
Intr	oductio)n	v		
1	Scop				
2	Norr	native references			
3	Tern 3.1 3.2	1 1			
4	Meth	2			
5	Inju 5.1 5.2 5.3 5.4 5.5	ry risk curves Head 5.1.1 HIC 5.1.2 Rotational criterion Neck 5.2.1 N_{ij} – Eppinger 5.2.2 N_{te} – Mertz Thorax 5.3.1 Maximum resultant deflexion 5.3.2 PC-Score 5.3.3 TIC Abdomen 5.4.1 Penetration Knee-thigh-hip 5.5.1 Femur z-force 5.5.2 Acetabulum force 5.5.3 Femur force versus acetabulum force	3 3 3 3 6 14 18 18 21 24 28 31 33 35		
Ann	ex A (in	formative) HIC data			
Ann	ex B (in	offormative) Brain dende and a second second second second densities and the second seco	tr-19222-2021- 39		
Annex C (informative) Neck					
Ann	ex D (in	nformative) Thorax			
Ann	ex E (in	formative) Abdomen	79		
Ann	ex F (in	formative) Knee-thigh-hip	80		
Ann	ex G (in	formative) HIII-THOR neck transfer function			
Ann	ex H (in	nformative) Repeatability and reproducibility			
Ann	ex I (inf	formative) Thorax repeatability and reproducibility			
Bibl	iograpl	hy			

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 36, *Safety aspects and impact testing*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

https://standards.iteh.ai/catalog/standards/iso/2f00dc22-f94e-49ca-bb34-5cb9aa4d9cf7/iso-tr-19222-2021

Introduction

The THOR-M 50 dummy is in its final development phase and can be used to evaluate the occupant protection in frontal impact. US-NCAP and Euro-NCAP are currently developing test procedures using this dummy to evaluate car performances. However, injury risk curves (IRCs) are proposed by these organizations without a large consensus. Rules were established to develop IRCs (ISO/TS 18506). These rules were applied to the available data to evaluate IRCs for THOR-M 50. In addition to the quality evaluation as recommended in ISO/TS 18506, considerations on the repeatability and reproducibility of the criteria, as well as their performance with regard to field investigations will be proposed.

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/TR 19222:2021

https://standards.iteh.ai/catalog/standards/iso/2f00dc22-f94e-49ca-bb34-5cb9aa4d9cf7/iso-tr-19222-2021

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/TR 19222:2021

https://standards.iteh.ai/catalog/standards/iso/2f00dc22-f94e-49ca-bb34-5cb9aa4d9cf7/iso-tr-19222-2021

Road vehicles — Injury risk curves for the THOR dummy

1 Scope

This document provides injury risk curves to assess occupant protection in frontal impact using the 50th percentile THOR metric dummy (THOR-M 50).

Injury risk curves developed specifically for the THOR dummy are chosen preferably, however, when not available, the applicability of the PMHS injury risk curve is evaluated with regard to the dummy biofidelity.

Finally, when possible, a field evaluation is provided.

2 Normative references

There are no normative references in this document.

3 Terms and definitions and abbreviated terms

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

3.1 Terms and definitions ISO/TR 19222:202

https://standards.iteh.ai/catalog/standards/iso/2f00dc22-f94e-49ca-bb34-5cb9aa4d9cf7/iso-tr-19222-2021

THOR-M 50

50th percentile metric dummy as defined in Reference [61]

3.1.2

injury criterion

physical parameter which correlates well with the severity of a specific injury or injuries of a body region under consideration

3.1.3 injury risk curve IRC

curve giving the probability, for a defined population and for a given input, to sustain a specified severity of injury

3.1.4 injury risk function IRF

mathematical function that relates a value of an *injury criterion* (3.1.2) and possible additional factors (variables) to a risk of sustaining an injury of a certain level

3.2 Abbreviated terms

AIS abbreviate injury score

ISO/TR 19222:2021(E)

BrIC	brain injury criterion
CI	confidence interval
CIBIC	convolution of impulse response for brain injury criterion
HIC	head injury criterion
КТН	knee-thigh-hip
MAIS	maximum abbreviate injury score
NFR	number of fractured ribs
NHP	non-human primate
NSFR	number of separated fractured ribs
PC-Score	principal component analysis score
PDB	partnership for dummy and biomechanics
PMHS	post mortem human subject
RVCI	rotational velocity change index
TBI	traumatic brain injury Teh Standards
THUMS	Toyota human body model standards.iteh.ai)
TIC	thoracic injury criterion Preview
UBrIC	updated brain injury criterion

ISO/TR 19222:2021

4 Methodology ch.ai/catalog/standards/iso/2f00dc22-f94e-49ca-bb34-5cb9aa4d9cf7/iso-tr-19222-2021

The following steps were performed for each criterion:

- existing injury risk curves were collected;
- reference data were collected and verified;
- ISO/TS 18506 was applied;
- criteria quotation was calculated:
 - ISO/TS 18506 rules: from 1 for full application to 0 for a different method leading to different results, except if a rationale if provided;
 - ISO/TS 18506 quality index: relative size of the confidence interval for 5 %, 25 % and 50 % risks of injury. The relative size of the confidence interval is defined as the width of the 95 % confidence interval at a given injury risk, relative to the value of the stimulus at this same injury risk;
 - evaluation of the repeatability and reproducibility (R&R) of the THOR-M 50 for the considered criterion, when R&R data are available, this criterion is equal to 1-(standard deviation/mean):

- R&R data in certification tests are provided in <u>Annex H</u>;

- R&R data in sled tests are provided in <u>Annex I</u> for the thorax;
- THOR applicability: this criterion has the following values:
 - THOR specific criterion: from 1 for full application to 0 for a different method leading to different results, except if a rationale is provided;
 - human IRC: biofidelity score;
 - transfer function between THOR and human: coefficient of correlation;
 - unknown: when the biofidelity score or the correlation coefficient are unknown;
- field data evaluation.

NHTSA is issuing a document on Injury Risk Curves for the THOR dummy (Reference [7]). This document was developed independently. Therefore, the readers can make their own comparisons and conclusions.

5 Injury risk curves

5.1 Head

5.1.1 HIC

iTeh Standards

5.1.1.1 HIC 15 ms / skull fracture – Mertz

- Injury target: skull fracture
- Source: ISO/TR 7861, Reference [51] 1 ent Preview
- Channels: linear accelerations (a_x, a_y, a_z) measured at the head centre of gravity <u>ISO/IR 19222:2021</u>

Filtration: CFC1000 https://standards.ite/intercenting/standards/iso/2f00dc22-f94e-49ca-bb34-5cb9aa4d9cf7/iso-tr-19222-2021

- Formula:
$$H_{15} = \max_{15} \left\{ (t_2 - t_1) \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} a(t) dt \right]^{2,5} \right\}$$

where

 H_{15} is the variable for the head injury criterion (HIC);

 t_1 is the beginning of the time window;

- t_2 is the end of the time window;
- *a* is the resultant acceleration expressed in *g*;
- *t* is the time expressed in milliseconds;
- d is the derivative function;

 \max_{15} is the maximum of the function calculated between t_1 and t_2 , with (t_2-t_1) not exceeding 15 ms.

- $P_{\text{skull}_{\text{fracture}}} = \Phi(H_{15}; \mu = 1 \ 500; \sigma = 488)$

ISO/TR 19222:2021(E)

where

*P*_{skull fracture} is the injury probability for a skull fracture;

- Φ is the cumulative distribution function of the normal distribution;
- H_{15} Is the variable for the head injury criterion (HIC);
- μ is the mean of the normal distribution;
- σ is the standard deviation of the normal distribution.
- Data: 65 PMHS (References [<u>20</u>], [<u>21</u>], [<u>82</u>], [<u>24</u>], [<u>25</u>], [<u>59</u>]) provided in <u>Table A.1</u> of <u>Annex A</u>
- Statistics: modified median rank method (Reference [50])
- Version of dummy: injury risk curve developed directly from PMHS data and is applicable to dummies with a biofidelic response to head impact response.
- Comments:
 - This curve is a human injury risk curve.
 - THOR biofidelity: in the corridors of head drop tests (Table 14 and Figure 4 in Reference [61]).
 - Reasons for not following ISO/TS 18506 rules: the modified median rank method has a better quality assessment than Eppinger's curve. Reference [51] points out that Hertz's log-normal curve predicts a 12 % risk of AIS ≥ 2 skull fracture at HIC=400, when no cases of skull fracture were observed at or below this value. This compares to 1 % risk predicted by Mertz's curve.

Figure 1 — Injury risk curves for Skull fracture as a function of HIC

- Quotation
 - ISO/TS 18506 rules: 0,5

- Quality assessment
 - CI at 5 % = 1,12 (marginal)
 - CI at 25 % = 0,68 (fair)
 - CI at 50 % = 0,54 (fair)

NOTE The quality assessment at low levels of risk is relevant when assessing today's occupant restraint systems.

- R&R: 95 %
- THOR applicability: 1

5.1.1.2 HIC 15ms/skull fracture – Eppinger

- Injury target: skull fracture
- Source: Reference [12], Reference [23]
- Channels: linear accelerations (a_x, a_y, a_z) measured at the head centre of gravity
- Filtration: CFC1000

- Formula:
$$H_{15} = \max_{15} \left\{ (t_2 - t_1) \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} a(t) dt \right]^{2,5} \right\}$$

wnere

is the variable for the head injury criterion (HIC); H_{15}

is the beginning of the time window; t_1

 t_{2} https://s t_{2

- is the resultant acceleration expressed in g; а
- d is the derivative function;
- t is the time expressed in milliseconds;

 \max_{15} is the maximum of the function calculated between t_1 and t_2 , with (t_2-t_1) not exceeding 15 ms.

-
$$P_{\text{skull fracture}} = \Phi(\ln(H_{15}); \mu = 6,96; \sigma = 0,847)$$

where

*P*_{skull_fracture} is the injury probability for a skull fracture;

- Φ is the cumulative distribution function of the normal distribution;
- is the variable for the head injury criterion (HIC); H_{15}
- is the mean of the normal distribution; μ
- is the standard deviation of the normal distribution. σ
- Data: 54 PMHS (References [20], [21], [82], [24] and [25]) provided in Table A.2 of Annex A
- Statistics: maximum likelihood of log-normal

- Version of dummy: injury risk curve developed directly from PMHS data and is applicable to dummies with a biofidelic response to head impact response.
- Comments:
 - Human injury risk curve
 - THOR biofidelity: in the corridors of head drop tests (Table 14 and Figure 4 in Reference [61])
 - Risk curve close to the survival (log-normal) curve used in ISO/TS 18506
- Curves

IRF (maximum likelihood of log-normal)

Figure 2 — Injury risk curves for Skull fracture as a function of HIC

— Quotation

Key X

Y

- ISO/TS 18506 rules: 1
- Quality assessment
 - CI at 5 % = 1,88 (unacceptable)
 - CI at 25 % = 0,89 (fair)
 - CI at 50 % = 0,63 (fair)
- R&R: 95 %
- THOR applicability: 1

5.1.2 Rotational criterion

Numerous brain injury metrics have been proposed to predict diffuse-type traumatic brain injuries (TBIs) with the use of rotational response of head kinematics. Diffuse-type TBIs are hypothesized

to be caused by shear deformation of the brain tissue due to a rapid rotational motion of the head (Reference [26]). According to the hypothesis, the following five kinematics-based brain injury metrics derived from rotational head kinematic variables, BrIC (Reference [81]), CIBIC (Reference [80]), DAMAGE (Reference [18]), RVCI (Reference [91]), UBrIC (Reference [16]), were selected based on correlations with brain tissue strain response, as detailed in B.1.5.

As measurement channels for calculation of the kinematic-based brain injury metrics, angular velocities are obtained with gyro sensors fixed at the head centre of gravity of THOR. Angular velocities are filtered to channel frequency class (CFC) 60, and angular accelerations are obtained by differentiating the filtered angular velocity data.

Using survival analysis with Weibull distribution, injury risk curves (IRCs) for AIS 2 and AIS 4 traumatic brain injuries (TBIs), as given in Figure 3 to Figure 7, are formulated as the following function of the five kinematics-based brain injury metrics, DAMAGE, UBrIC, CIBIC, BrIC and RVCI, respectively.

$$P = 1 - e^{\left(-e^{\left(\frac{1}{b} \times \ln(dy+c) - \frac{a}{b}\right)}\right)}$$

Where *a* and *b* are coefficients corresponding to the shape (1/b) and scale (e^a) parameters in the Weibull distribution and *y* is the kinematics-based brain injury metric. The coefficients and quality indexes are provided in Table 1. *P* is the injury probability.

All IRCs given in this document for the THOR 50th percentile male were newly developed and are detailed in <u>Annex B</u>. Using survival analysis with Weibull distribution, original IRCs for AIS 2+ and AIS 4+ TBIs were developed based on the 95th percentile peak maximum principle strain of brain deformation (MPS95) in the finite element (FE) reconstruction simulations of human and Non-Human Primate (NHP) experiment data. The IRCs based on MPS95 were transferred to IRCs based on the kinematicsbased brain injury metrics according to linear correlations between MPS95 and the kinematics-based brain injury metrics.

s://standard Injury	S.fteh.al/catalog/ Metrics	standards/i Scale (<i>e^a</i>)	So/2100dc2 Shape (1/b)	2-1946-49ca- Intercept (<i>C</i>)	Slope (<i>d</i>)	5 % Risk (QI)	25 % Risk (QI)	50 % Risk (QI)
	DAMAGE			0,017	0,957	0,205 (0,41)	0,330 (0,25)	0,418 (0,25)
	UBrIC			-0,014	1,054	0,215 (0,36)	0,329 (0,22)	0,409 (0,23)
AIS2	CIBIC	0,459	3,875	0,016	0,505	0,390 (0,41)	0,627 (0,25)	0,794 (0,25)
	BrIC ^a			-0,103	0,600	0,527 (0,26)	0,726 (0,18)	0,867 (0,19)
	RVCI			0,012	0,012	16,75 (0,40)	26,70 (0,24)	33,76 (0,24)
	DAMAGE			0,017	0,957	0,395 (0,45)	0,531 (0,27)	0,617 (0,23)
	UBrIC			-0,014	1,054	0,388 (0,42)	0,512 (0,25)	0,590 (0,22)
AIS4	CIBIC	0,646	6,051	0,016	0,505	0,751 (0,45)	1,009 (0,27)	1,172 (0,23)
	BrIC ^a			-0,103	0,600	0,830 (0,35)	1,048 (0,22)	1,185 (0,19)
QI: Quality inc fair' (0,5 – 1,0 ª BrIC: cau	dex and its categories)); 'marginal' (1,0 – 1 tion should be used v	based on (Ref 5); and 'unacc with the IRCs f	ference [<mark>64</mark>]), t eptable' (> 1,5 or BrIC presen	he quality of injur 5). ted here from the	y risk function original injury	s can be categ	orized into 'goo rovided in Refe	od' (0,0 – 0,5 erence [<mark>81</mark>].

 Table 1 — Coefficients and quality of the injury risk curves

5 % Risk 25 % Risk 50 % Risk Scale (e^a) Shape (1/b) Intercept (C) Injury Metrics Slope (d) (QI) (QI) (QI) 42,79 31,93 49,64 RVCI 0,012 0,012 (0,27) (0,45) (0, 23)QI: Quality index and its categories based on (Reference [64]), the quality of injury risk functions can be categorized into 'good' (0,0 – 0,5); 'fair' (0,5 – 1,0); 'marginal' (1,0 – 1,5); and 'unacceptable' (> 1,5). BrIC: caution should be used with the IRCs for BrIC presented here from the original injury risk curves provided in Reference [81].

Table 1 (continued)

5.1.2.1 DAMAGE

 $\vec{\delta}(t)$

$$\begin{bmatrix} m_{x} & 0 & 0 \\ 0 & m_{y} & 0 \\ 0 & 0 & m_{z} \end{bmatrix} \begin{bmatrix} \ddot{\delta}_{x} \\ \ddot{\delta}_{y} \\ \ddot{\delta}_{z} \end{bmatrix} + \begin{bmatrix} c_{xx} + c_{xy} + c_{xz} & -c_{xy} & -c_{xz} \\ -c_{xy} & c_{xy} + c_{yy} + c_{yz} & -c_{yz} \\ -c_{xz} & -c_{yz} & c_{xz} + c_{yz} + c_{zz} \end{bmatrix} \begin{bmatrix} \dot{\delta}_{x} \\ \dot{\delta}_{y} \\ \dot{\delta}_{z} \end{bmatrix} + \begin{bmatrix} k_{xx} + k_{xy} + k_{xz} & -k_{xy} & -k_{xz} \\ -k_{xy} & k_{xy} + k_{yy} + k_{yz} & -k_{yz} \\ -k_{xz} & -k_{yz} & k_{xz} + k_{yz} + k_{zz} \end{bmatrix} \begin{bmatrix} \delta_{x} \\ \delta_{y} \\ \delta_{z} \end{bmatrix} = \begin{bmatrix} m_{x} & 0 & 0 \\ 0 & m_{y} & 0 \\ 0 & 0 & m_{z} \end{bmatrix} \begin{bmatrix} \ddot{u}_{x} \\ \ddot{u}_{y} \\ \ddot{u}_{z} \end{bmatrix}$$

- Formula:
$$B_{\text{DAMAGE}} = \beta \times t_{\text{max}} \{ |\vec{\delta}(t)| \}$$

where

$= \left[\delta_x(t) \ \delta_y(t) \ \delta_z(t)\right]^T / \text{standards.iteh.ai}$

- β is the scale factor;
- *m* is the mass expressed in kg;

 c_{ij} is the damping expressed in Ns/m; 19222.2021

https://standards.iteb.a/ottalog/standards/iso/2/00dc22-194e-49ca-bb34-5cb9aa4d9cf7/iso-tr-19222-2021 k_{ij} is the stiffness expressed in N/m;

$\ddot{\delta}$, $\dot{\delta}$, δ are the acceleration, velocity and displacement respectively;

ü is the applied angular acceleration;

and the following variables have the following values:

$$m_{x} = 1; \quad m_{y} = 1; \quad m_{z} = 1;$$

$$k_{xx} = 32 \ 142; \quad k_{yy} = 23 \ 493; \quad k_{zz} = 16 \ 935;$$

$$k_{xy} = 0; \quad k_{yz} = 0; \quad k_{xz} = 1 \ 636,3;$$

$$\lambda = 5,914 \ 8; \quad \beta = 2,990 \ 31;$$

$$[c] = \lambda \times [k]$$