ETSI TS 138 213 V16.8.0 (2022-01)

5G; iTeh SNR; dards Physical layer procedures for control (3GPP TS 38.213 version 16.8.0 Release 16)

Reference
RTS/TSGR-0138213vg80

Keywords
5G

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from: http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommitteeSupportStaff.aspx

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or other professional standard and applicable regulations.

No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2022. All rights reserved.

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECTTM, **PLUGTESTS**TM, **UMTS**TM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP**TM and **LTE**TM are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M**TM logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. **GSM**[®] and the GSM logo are trademarks registered and owned by the GSM Association.

Legal Notice

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities. These shall be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Inte	llectual Property Rights	2
Leg	al Notice	2
Mod	dal verbs terminology	2
Fore	eword	5
1	Scope	6
2	References	6
3	Definitions, symbols and abbreviations	
3.1	Definitions	7
3.2	Symbols	7
3.3	Abbreviations	
4	Synchronization procedures	
4.1	Cell search	
4.2	Transmission timing adjustments	11
4.3	Timing for secondary cell activation / deactivation	12
5	Radio link monitoring	13
6	Link recovery procedures	14
7	Uplink Power control	
7.1	Physical uplink shared channel	17
7.1.1	UE behaviour	17
7.2	Physical uplink control channel.	24
7.2.1		
7.3	Sounding reference signals	
7.3.1		
7.3.1	Physical random access channel	
7.5	Prioritizations for transmission power reductions	
7.6 https://sta7.6.1	Dual connectivity	
7.6.1		
7.6.2		
7.7	Power headroom report	37
7.7.1	Type 1 PH report	38
7.7.2	Type 2 PH report	39
7.7.3	Type 3 PH report	39
8	Random access procedure	
8.1	Random access preamble	40
8.1 <i>A</i>	PUSCH for Type-2 random access procedure	43
8.2	Random access response - Type-1 random access procedure	45
8.2A		
8.3	PUSCH scheduled by RAR UL grant	
8.4	PDSCH with UE contention resolution identity	
9	UE procedure for reporting control information	51
9.1	HARQ-ACK codebook determination	
9.1.1		
9.1.2		
9.1.2	71	
9.1.2		
9.1.3		
	71	
9.1.3		
9.1.3		
9.1.3		
9.1.4	Type-3 HARQ-ACK codebook determination	76

Histo		
Anne	ex A: Change history	183
	•	
16.6 16.7	UE procedure for LTE sidelink transmission	
16.5.2		
16.5.2		
16.5.2	V1 C	
16.5.1	1.2 Type-1 HARQ-ACK codebook in physical uplink shared channel	179
16.5.1	1.1 Type-1 HARQ-ACK codebook in physical uplink control channel	177
16.5.1	Type-1 HARQ-ACK codebook determination	177
16.5	UE procedure for reporting HARQ-ACK on uplink	
16.4	UE procedure for transmitting PSCCH	
16.3.1		
16.2.4	4.3.1 Prioritizations for sidelink and uplink transmissions/receptions	
16.2.4 16.2.4	<u>.</u>	
16.2.4	1	
16.2.4		
16.2.4	ı.	
16.2.3		
16.2.2		
16.2.1		166
16.2.0		
16.2	Power control	
16.1	Synchronization procedures	
16	UE procedures for sidelink FTSLTS 138.213.V16.8.0.(2022-01)	163
15	Dual active protocol stack based handover	162
14		
	Integrated access-backhaul operation	
13	UE procedure for monitoring Type0-PDCCH CSS sets	147
12	Bandwidth part operation	144
11.4	SRS switching	
11.3	Group TPC commands for PUCCH/PUSCH	143
11.2A		
11.2	Interrupted transmission indication	
11.1.1	- r	
11.1	Slot configuration	
11	UE-group common signalling	
10.4 10.5	Search space set group switching	
10.3	PDCCH monitoring indication and dormancy/non-dormancy behaviour for SCells	
10.2A	8	
10.2	PDCCH validation for DL SPS and UL grant Type 2	
10.1	UE procedure for determining physical downlink control channel assignment	
10	UE procedure for receiving control information	
9.3	UCI reporting in physical uplink shared channel	
9.2.6	PUCCH repetition procedure	
9.2.5.		
9.2.5.		
	HARQ-ACK or SR or CSI in a PUCCH	
9.2.5.		
9.2.5	UE procedure for reporting multiple UCI types	
9.2.4	UE procedure for reporting SR	
9.2.2	UE procedure for reporting HARQ-ACK	
9.2.1 9.2.2	PUCCH Resource Sets PUCCH Formats for UCI transmission	
9.2	UCI reporting in physical uplink control channel	

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

iTeh Standards (https://standards.iteh.ai) Document Preview

ETSI TS 138 213 V16.8.0 (2022-01)

https://standards.iteh.ai/catalog/standards/sist/2f2d0990-f63b-49ed-9398-3d166431f97b/etsi-ts-138-213-v16-8-0-2022-0

1 Scope

The present document specifies and establishes the characteristics of the physical layer procedures for control operations in 5G-NR.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications"
[2]	3GPP TS 38.201: "NR; Physical Layer – General Description"
[3]	3GPP TS 38.202: "NR; Services provided by the physical layer"
[4]	3GPP TS 38.211: "NR; Physical channels and modulation"
[5]	3GPP TS 38.212: "NR; Multiplexing and channel coding"
[6]	3GPP TS 38.214: "NR; Physical layer procedures for data"
[7]	3GPP TS 38.215: "NR; Physical layer measurements"
[8-1]	3GPP TS 38.101-1: "NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone"
[8-2]	3GPP TS 38.101-2: "NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone"
[8-3]	3GPP TS 38.101-3: "NR; User Equipment (UE) radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios"
[8-4]	3GPP TS 38.101-4: "NR; User Equipment (UE) radio transmission and reception; Part 4: Performance requirements" 138 213 V 16.8.0 (2022-01)
lards.iteh.ai/cata [9]	3GPP TS 38.104: "NR; Base Station (BS) radio transmission and reception"
[10]	3GPP TS 38.133: "NR; Requirements for support of radio resource management"
[11]	3GPP TS 38.321: "NR; Medium Access Control (MAC) protocol specification"
[12]	3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification"
[13]	3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures"
[14]	3GPP TS 36.321: "Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification"
[15]	3GPP TS 37.213: "Physical layer procedures for shared spectrum channel access"
[16]	3GPP TS 38.473: "F1 application protocol (F1AP)"

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in [1, TR 21.905] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in [1, TR 21.905]. A parameter referenced in *italics* is provided by higher layers.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in [1, TR 21.905].

BPRE Bits per resource element

BWP Bandwidth part
CB Code block
CBG Code block group
CBR Channel busy ratio

CBR Channel busy ratio CCE Control channel element Standards

CORESET Control resource set

CRC Cyclic redundancy check
CSI Channel state information Preview

CSS Common search space
DAI Downlink assignment index
DAPS Dual active protocol stack

DC Dual connectivity

DCI Downlink control information

DL Downlink

DL-SCH Downlink shared channel EPRE Energy per resource element

EN-DC E-UTRA NR dual connectivity with MCG using E-UTRA and SCG using NR

FR1 Frequency range 1 FR2 Frequency range 2

GSCN Global synchronization channel number

HARQ-ACK Hybrid automatic repeat request acknowledgement

MCG Master cell group

MCS Modulation and coding scheme

NDI New Data Indicator

NE-DC E-UTRA NR dual connectivity with MCG using NR and SCG using E-UTRA

NR-DC NR NR dual connectivity
PBCH Physical broadcast channel

PCell Primary cell

PDCCH Physical downlink control channel PDSCH Physical downlink shared channel PRACH Physical random access channel

PRB Physical resource block
PRG Physical resource block group
PSCell Primary secondary cell

PSBCH Physical sidelink broadcast channel
PSCCH Physical sidelink control channel
PSFCH Physical sidelink feedback channel
PSS Primary synchronization signal

Physical sidelink shared channel **PSSCH PUCCH** Physical uplink control channel

PUCCH-SCell PUCCH SCell

Physical uplink shared channel **PUSCH**

Quasi co-location QCL RBResource block RE Resource element **RLM** Radio link monitoring **RRM** Radio resource management

RS Reference signal

RSRP Reference signal received power

SCG Secondary cell group Sidelink control information SCI

SCS Subcarrier spacing

Sidelink feedback control information **SFCI**

System frame number SFN

Sidelink SL

Start and length indicator value **SLIV** SPS Semi-persistent scheduling SR Scheduling request SRS resource indicator SRI Sounding reference signal SRS SSS Secondary synchronization signal

TA Timing advance Timing advance group TAG

Transmission Configuration Indicator TCI

Uplink control information UCI

UE User equipment

UL Uplink

Uplink shared channel / Standards.iteh.ai) **UL-SCH**

UE-specific search space USS **Document Preview**

4 Synchronization procedures

4.1 Cell search

Cell search is the procedure for a UE to acquire time and frequency synchronization with a cell and to detect the physical layer Cell ID of the cell.

A UE receives the following synchronization signals (SS) in order to perform cell search: the primary synchronization signal (PSS) and secondary synchronization signal (SSS) as defined in [4, TS 38.211].

A UE assumes that reception occasions of a physical broadcast channel (PBCH), PSS, and SSS are in consecutive symbols, as defined in [4, TS 38.211], and form a SS/PBCH block. The UE assumes that SSS, PBCH DM-RS, and PBCH data have same EPRE. The UE may assume that the ratio of PSS EPRE to SSS EPRE in a SS/PBCH block is either 0 dB or 3 dB. If the UE has not been provided dedicated higher layer parameters, the UE may assume that the ratio of PDCCH DMRS EPRE to SSS EPRE is within -8 dB and 8 dB when the UE monitors PDCCHs for a DCI format 1_0 with CRC scrambled by SI-RNTI, P-RNTI, or RA-RNTI.

For a half frame with SS/PBCH blocks, the first symbol indexes for candidate SS/PBCH blocks are determined according to the SCS of SS/PBCH blocks as follows, where index 0 corresponds to the first symbol of the first slot in a half-frame.

- Case A 15 kHz SCS: the first symbols of the candidate SS/PBCH blocks have indexes of $\{2, 8\} + 14 \cdot n$.
 - For operation without shared spectrum channel access:
 - For carrier frequencies smaller than or equal to 3 GHz, n=0,1.
 - For carrier frequencies within FR1 larger than 3 GHz, n = 0, 1, 2, 3.
 - For operation with shared spectrum channel access, as described in [15, TS 37.213], n = 0, 1, 2, 3, 4.
- Case B 30 kHz SCS: the first symbols of the candidate SS/PBCH blocks have indexes $\{4, 8, 16, 20\} + 28 \cdot n$. For carrier frequencies smaller than or equal to 3 GHz, n=0. For carrier frequencies within FR1 larger than 3 GHz, n = 0, 1.

https://standards.iteh.ai/catalog/standards/sist/2f2d0990-f63b-49ed-9398-3d166431f97b/etsi-ts-138-213-v16-8-0-2022-01

- Case C 30 kHz SCS: the first symbols of the candidate SS/PBCH blocks have indexes $\{2, 8\} + 14 \cdot n$.
- - For operation without shared spectrum channel access
 - For paired spectrum operation
 - For carrier frequencies smaller than or equal to 3 GHz, n=0,1. For carrier frequencies within FR1 larger than 3 GHz, n = 0, 1, 2, 3.
 - For unpaired spectrum operation
 - For carrier frequencies smaller than 1.88 GHz, n=0,1. For carrier frequencies within FR1 equal to or larger than 1.88 GHz, n = 0, 1, 2, 3.
 - For operation with shared spectrum channel access, n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- Case D 120 kHz SCS: the first symbols of the candidate SS/PBCH blocks have indexes $\{4, 8, 16, 20\} + 28 \cdot n$. For carrier frequencies within FR2, n = 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
- Case E 240 kHz SCS: the first symbols of the candidate SS/PBCH blocks have indexes $\{8, 12, 16, 20, 32, 36, 40, 44\} + 56 \cdot n$. For carrier frequencies within FR2, n = 0, 1, 2, 3, 5, 6, 7, 8.

From the above cases, if the SCS of SS/PBCH blocks is not provided by ssbSubcarrierSpacing, the applicable cases for a cell depend on a respective frequency band, as provided in [8-1, TS 38.101-1] and [8-2, TS 38.101-2]. A same case applies for all SS/PBCH blocks on the cell. If a 30 kHz SS/PBCH block SCS is indicated by ssbSubcarrierSpacing,

Case B applies for frequency bands with only 15 kHz SS/PBCH block SCS as specified in [8-1, TS 38.101-1], and the case specified for 30 kHz SS/PBCH block SCS in [8-1, TS 38.101-1] applies for frequency bands with 30 kHz SS/PBCH block SCS or both 15 kHz and 30 kHz SS/PBCH block SCS as specified in [8-1, TS 38.101-1]. For a UE configured to operate with carrier aggregation over a set of cells in a frequency band of FR2 or with frequency-contiguous carrier aggregation over a set of cells in a frequency band of FR1, if the UE is provided SCS values by *ssbSubcarrierSpacing* for receptions of SS/PBCH blocks on any cells from the set of cells, the UE expects the SCS values to be same.

The candidate SS/PBCH blocks in a half frame are indexed in an ascending order in time from 0 to $\overline{L}_{max}-1$, where \overline{L}_{max} is determined according to SS/PBCH block patterns for Cases A through E. L_{max} is a maximum number of SS/PBCH block indexes in a cell, and the maximum number of transmitted SS/PBCH blocks within a half frame is L_{max} .

- For operation without shared spectrum channel access, $L_{max} = \overline{L}_{max}$
- For operation with shared spectrum channel access, $L_{max}=8$ for $\overline{L}_{max}=10$ and 15 kHz SCS of SS/PBCH blocks and for $\overline{L}_{max}=20$ and 30 kHz SCS of SS/PBCH blocks

For $\overline{L}_{max} = 4$, a UE determines the 2 LSB bits of a candidate SS/PBCH block index per half frame from a one-to-one mapping with an index of the DM-RS sequence transmitted in the PBCH as described in [4, TS 38.211].

For $\overline{L}_{max} > 4$, a UE determines the 3 LSB bits of a candidate SS/PBCH block index per half frame from a one-to-one mapping with an index of the DM-RS sequence transmitted in the PBCH as described in [4, TS 38.211]

- for $\overline{L}_{max} = 10$, the UE determines the 1 MSB bit of the candidate SS/PBCH block index from PBCH payload bit \bar{a}_{A+7} as described in [5, TS 38.212]
- for $\overline{L}_{max} = 20$, the UE determines the 2 MSB bits of the candidate SS/PBCH block index from PBCH payload bits $\bar{a}_{\bar{A}+6}$, $\bar{a}_{\bar{A}+7}$ as described in [5, TS 38.212]
- for $\overline{L}_{max} = 64$, the UE determines the 3 MSB bits of the candidate SS/PBCH block index from PBCH payload bits $\bar{a}_{\bar{A}+5}$, $\bar{a}_{\bar{A}+6}$, $\bar{a}_{\bar{A}+7}$ as described in [5, TS 38.212]

A UE can be provided per serving cell by *ssb-periodicityServingCell* a periodicity of the half frames for reception of the SS/PBCH blocks for the serving cell. If the UE is not configured a periodicity of the half frames for receptions of the SS/PBCH blocks, the UE assumes a periodicity of a half frame. A UE assumes that the periodicity is same for all SS/PBCH blocks in the serving cell.

For initial cell selection, a UE may assume that half frames with SS/PBCH blocks occur with a periodicity of 2 frames.

For operation without shared spectrum channel access, an SS/PBCH block index is same as a candidate SS/PBCH block index.

For operation with shared spectrum channel access, a UE assumes that transmission of SS/PBCH blocks in a half frame is within a discovery burst transmission window that starts from the first symbol of the first slot in a half-frame. The UE can be provided per serving cell by discoveryBurstWindowLength a duration of the discovery burst transmission window. If discoveryBurstWindowLength is not provided, the UE assumes that the duration of the discovery burst transmission window is a half frame. For a serving cell, the UE assumes that a periodicity of the discovery burst transmission window is same as a periodicity of half frames for receptions of SS/PBCH blocks in the serving cell. The UE assumes that one or more SS/PBCH blocks indicated by ssb-PositionsInBurst may be transmitted within the discovery burst transmission window and have candidate SS/PBCH blocks indexes corresponding to SS/PBCH block indexes provided by ssb-PositionsInBurst. If MSB k, $k \ge 1$, of ssb-PositionsInBurst is set to 1, the UE assumes that SS/PBCH block(s) within the discovery burst transmission window with candidate SS/PBCH block index(es) corresponding to SS/PBCH block index equal to k-1 may be transmitted; if MSB k is set to 0, the UE assumes that the SS/PBCH block(s) are not transmitted.

For operation with shared spectrum channel access, a UE assumes that SS/PBCH blocks in a serving cell that are within a same discovery burst transmission windows are quasi co-located with respect to average gain, quasi co-location 'typeA' and 'typeD' properties, when applicable [6, TS 38.214], if a value of $(N_{DM-RS}^{PBCH} \mod N_{SSB}^{QCL})$ is same among the SS/PBCH blocks. N_{DM-RS}^{PBCH} is an index of a DM-RS sequence transmitted in a

PBCH of a corresponding SS/PBCH block, and N_{SSB}^{QCL} is either provided by ssb-PositionQCL or, if ssb-PositionQCL is not provided, obtained from a MIB provided by a SS/PBCH block according to Table 4.1-1 with $k_{SSB} < 24$ [4, TS 38.211]. subCarrierSpacingCommon indicates SCS of RMSI only for the case of operation without shared spectrum channel access. The UE can determine an SS/PBCH block index according to $\left(N_{DM-RS}^{PBCH} \bmod N_{SSB}^{QCL}\right)$, or according to $\left(\bar{\iota} \bmod N_{SSB}^{QCL}\right)$ where $\bar{\iota}$ is the candidate SS/PBCH block index. The UE assumes that within a discovery burst transmission window, a number of transmitted SS/PBCH blocks on a serving cell is not larger than N_{SSB}^{QCL} and a number of transmitted SS/PBCH blocks with a same SS/PBCH block index is not larger than one.

Table 4.1-1: Mapping between the combination of subCarrierSpacingCommon and LSB of ssb- $SubcarrierOffset \ to \ N_{SSR}^{QCL}$

subCarrierSpacingCommon	LSB of ssb-SubcarrierOffset	N _{SSB} ^{QCL}
scs15or60	0	1
scs15or60	1	2
scs30or120	0	4
scs30or120	1	8

Upon detection of a SS/PBCH block, the UE determines from MIB that a CORESET for Type0-PDCCH CSS set, as described in clause 13, is present if $k_{SSB} < 24$ [4, TS 38.211] for FR1 or if $k_{SSB} < 12$ for FR2. The UE determines from MIB that a CORESET for Type0-PDCCH CSS set is not present if $k_{SSB} > 23$ for FR1 or if $k_{SSB} > 11$ for FR2; the CORESET for Type0-PDCCH CSS set may be provided by PDCCH-ConfigCommon.

For a serving cell without transmission of SS/PBCH blocks, a UE acquires time and frequency synchronization with the serving cell based on receptions of SS/PBCH blocks on the PCell, or on the PSCell, or on an SCell if applicable as described in [10, TS 38.133], of the cell group for the serving cell.

4.2 Transmission timing adjustments

A UE can be provided a value $N_{\text{TA,offset}}$ of a timing advance offset for a serving cell by *n-TimingAdvanceOffset* for the serving cell. If the UE is not provided *n-TimingAdvanceOffset* for a serving cell, the UE determines a default value $N_{\text{TA,offset}}$ of the timing advance offset for the serving cell as described in [10, TS 38.133].

If a UE is configured with two UL carriers for a serving cell, a same timing advance offset value $N_{\rm TA, offset}$ applies to both carriers.

Upon reception of a timing advance command for a TAG, the UE adjusts uplink timing for PUSCH/SRS/PUCCH transmission on all the serving cells in the TAG based on a value $N_{\rm TA, offset}$ that the UE expects to be same for all the serving cells in the TAG and based on the received timing advance command where the uplink timing for PUSCH/SRS/PUCCH transmissions is the same for all the serving cells in the TAG.

For a band with synchronous contiguous intra-band EN-DC in a band combination with non-applicable maximum transmit timing difference requirements as described in Note 1 of Table 7.5.3-1 of [10, TS 38.133], if the UE indicates *ul-TimingAlignmentEUTRA-NR* as 'required' and uplink transmission timing based on timing adjustment indication for a TAG from MCG and a TAG from SCG are determined to be different by the UE, the UE adjusts the transmission timing for PUSCH/SRS/PUCCH transmission on all serving cells part of the band with the synchronous contiguous intra-band EN-DC based on timing adjustment indication for a TAG from a serving cell in MCG in the band. The UE is not expected to transmit a PUSCH/SRS/PUCCH in one CG when the PUSCH/SRS/PUCCH is overlapping in time, even partially, with random access preamble transmitted in another CG.

For a SCS of $2^{\mu} \cdot 15\,$ kHz, the timing advance command for a TAG indicates the change of the uplink timing relative to the current uplink timing for the TAG in multiples of $16 \cdot 64 \cdot T_c/2^{\mu}$. The start timing of the random access preamble is described in [4, TS 38.211].

A timing advance command [11, TS 38.321] in case of random access response or in an absolute timing advance command MAC CE, T_A , for a TAG indicates N_{TA} values by index values of $T_A = 0, 1, 2, ..., 3846$, where an amount

38.211].

of the time alignment for the TAG with SCS of $2^{\mu} \cdot 15$ kHz is $N_{\text{TA}} = T_{\text{A}} \cdot 16 \cdot 64/2^{\mu}$. N_{TA} is defined in [4, TS 38.211] and is relative to the SCS of the first uplink transmission from the UE after the reception of the random access response or absolute timing advance command MAC CE.

In other cases, a timing advance command [11, TS 38.321], T_A , for a TAG indicates adjustment of a current N_{TA} value, N_{TA_old} , to the new N_{TA} value, N_{TA_new} , by index values of $T_A = 0$, 1, 2,..., 63, where for a SCS of $2^{\mu} \cdot 15$ kHz, $N_{TA_new} = N_{TA_old} + (T_A - 31) \cdot 16 \cdot 64 / 2^{\mu}$.

If a UE has multiple active UL BWPs, as described in clause 12, in a same TAG, including UL BWPs in two UL carriers of a serving cell, the timing advance command value is relative to the largest SCS of the multiple active UL BWPs. The applicable $N_{\rm TA_new}$ value for an UL BWP with lower SCS may be rounded to align with the timing advance granularity for the UL BWP with the lower SCS while satisfying the timing advance accuracy requirements in [10, TS 38.133].

Adjustment of an $N_{\rm TA}$ value by a positive or a negative amount indicates advancing or delaying the uplink transmission timing for the TAG by a corresponding amount, respectively.

For a timing advance command received on uplink slot n and for a transmission other than a PUSCH scheduled by a RAR UL grant or a fallbackRAR UL grant as described in clause 8.2A or 8.3, or a PUCCH with HARQ-ACK information in response to a successRAR as described in clause 8.2A, the corresponding adjustment of the uplink transmission timing applies from the beginning of uplink slot n+k+1 where

 $k = \left\lceil N_{\text{slot}}^{\text{subframe}\mu} \cdot \left(N_{\text{T,1}} + N_{\text{T,2}} + N_{\text{TA,max}} + 0.5\right) \middle/ T_{\text{sf}} \right\rceil$, $N_{\text{T,1}}$ is a time duration in msec of N_1 symbols corresponding to a PDSCH processing time for UE processing capability 1 when additional PDSCH DM-RS is configured, $N_{\text{T,2}}$ is a time duration in msec of N_2 symbols corresponding to a PUSCH preparation time for UE processing capability 1 [6, TS 38.214], $N_{\text{TA,max}}$ is the maximum timing advance value in msec that can be provided by a TA command field of 12 bits, $N_{\text{slot}}^{\text{subframe},\mu}$ is the number of slots per subframe, and T_{sf} is the subframe duration of 1 msec. N_1 and N_2 are determined with respect to the minimum SCS among the SCSs of all configured UL BWPs for all uplink carriers in the TAG and of all configured DL BWPs for the corresponding downlink carriers. For $\mu = 0$, the UE assumes $N_{1,0} = 14$ [6, TS 38.214]. Slot n and $N_{\text{slot}}^{\text{subframe},\mu}$ are determined with respect to the minimum SCS among the SCSs of all configured UL BWPs for all uplink carriers in the TAG. $N_{\text{TA,max}}$ is determined with respect to the minimum SCS among the SCSs of all configured UL BWPs for all uplink carriers in the TAG and for all configured initial UL BWPs provided by *initialUplinkBWP*. The uplink slot n is the last slot among uplink slot(s) overlapping with the slot(s) of PDSCH

If a UE changes an active UL BWP between a time of a timing advance command reception and a time of applying a corresponding adjustment for the uplink transmission timing, the UE determines the timing advance command value based on the SCS of the new active UL BWP. If the UE changes an active UL BWP after applying an adjustment for the uplink transmission timing, the UE assumes a same absolute timing advance command value before and after the active UL BWP change.

reception assuming $T_{TA} = 0$, where the PDSCH provides the timing advance command and T_{TA} is defined in [4, TS

If the received downlink timing changes and is not compensated or is only partly compensated by the uplink timing adjustment without timing advance command as described in [10, TS 38.133], the UE changes $N_{\rm TA}$ accordingly.

If two adjacent slots overlap due to a TA command, the latter slot is reduced in duration relative to the former slot.

4.3 Timing for secondary cell activation / deactivation

With reference to slots for PUCCH transmissions, when a UE receives in a PDSCH an activation command [11, TS 38.321] for a secondary cell ending in slot n, the UE applies the corresponding actions in [11, TS 38.321] no later than the minimum requirement defined in [10, TS 38.133] and no earlier than slot n+k, except for the following:

- the actions related to CSI reporting on a serving cell that is active in slot n+k
- the actions related to the *sCellDeactivationTimer* associated with the secondary cell [11, TS 38.321] that the UE applies in slot n+k

the actions related to CSI reporting on a serving cell which is not active in slot n+k that the UE applies in the earliest slot after n+k in which the serving cell is active.

The value of k is m+3 $N_{\rm slot}^{\rm subframe,\mu}+1$ where slot n+m is a slot indicated for PUCCH transmission with HARQ-ACK information for the PDSCH reception as described in clause 9.2.3 and $N_{\rm slot}^{\rm subframe,\mu}$ is a number of slots per subframe for the SCS configuration μ of the PUCCH transmission as defined in [4, TS 38.211].

With reference to slots for PUCCH transmissions, if a UE receives a deactivation command [11, TS 38.321] for a secondary cell ending in slot n, the UE applies the corresponding actions in [11, TS 38.321] no later than the minimum requirement defined in [10, TS 38.133], except for the actions related to CSI reporting on an activated serving cell which the UE applies in slot n+k.

If the *sCellDeactivationTimer* associated with the secondary cell expires in slot n, the UE applies the corresponding actions in [11, TS 38.321] no later than the minimum requirement defined in [10, TS 38.133], except for the actions related to CSI reporting on an activated serving cell which the UE applies in the first slot that is after slot $n+3 \cdot N_{\text{slot}}^{\text{subframe},\mu}$ where μ is the SCS configuration for PDSCH reception on the secondary cell.

5 Radio link monitoring

The downlink radio link quality of the primary cell is monitored by a UE for the purpose of indicating out-of-sync/in-sync status to higher layers. The UE is not required to monitor the downlink radio link quality in DL BWPs other than the active DL BWP, as described in clause 12, on the primary cell. If the active DL BWP is the initial DL BWP and for SS/PBCH block and CORESET multiplexing pattern 2 or 3, as described in clause 13, the UE is expected to perform RLM using the associated SS/PBCH block when the associated SS/PBCH block index is provided by *RadioLinkMonitoringRS*.

If the UE is configured with a SCG, as described in [12, TS 38.331], and the parameter *rlf-TimersAndConstants* is provided by higher layers and is not set to release, the downlink radio link quality of the PSCell of the SCG is monitored by the UE for the purpose of indicating out-of-sync/in-sync status to higher layers. The UE is not required to monitor the downlink radio link quality in DL BWPs other than the active DL BWP on the PSCell.

A UE can be configured for each DL BWP of a SpCell [11, TS 38.321] with a set of resource indexes, through a corresponding set of RadioLinkMonitoringRS, for radio link monitoring by failureDetectionResources. The UE is provided either a CSI-RS resource configuration index, by csi-RS-Index, or a SS/PBCH block index, by ssb-Index. The UE can be configured with up to N_{LR-RLM} RadioLinkMonitoringRS for link recovery procedures, as described in clause 6, and for radio link monitoring. From the N_{LR-RLM} RadioLinkMonitoringRS, up to N_{RLM} RadioLinkMonitoringRS can be used for radio link monitoring depending on L_{max} as described in Table 5-1, wherein L_{max} is as defined in clause 4.1, and up to two RadioLinkMonitoringRS can be used for link recovery procedures.

For operation with shared spectrum channel access, when a UE is provided a SS/PBCH block index by *ssb-Index*, the UE is expected to perform radio link monitoring using SS/PBCH block(s) in the discovery burst transmission window as described in clause 4.1, where the SS/PBCH block(s) have candidate SS/PBCH block index(es) corresponding to SS/PBCH block index provided by *ssb-Index*.

If the UE is not provided *RadioLinkMonitoringRS* and the UE is provided for PDCCH receptions TCI states that include one or more of a CSI-RS

- the UE uses for radio link monitoring the RS provided for the active TCI state for PDCCH reception if the active TCI state for PDCCH reception includes only one RS
- if the active TCI state for PDCCH reception includes two RS, the UE expects that one RS is configured with *qcl-Type* set to 'typeD' [6, TS 38.214] and the UE uses the RS configured with *qcl-Type* set to 'typeD' for radio link monitoring; the UE does not expect both RS to be configured with *qcl-Type* set to 'typeD'
- the UE is not required to use for radio link monitoring an aperiodic or semi-persistent RS
- For $L_{\text{max}} = 4$, the UE selects the N_{RLM} RS provided for active TCI states for PDCCH receptions in CORESETs associated with the search space sets in an order from the shortest monitoring periodicity. If more than one