This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

INTERNATIONAL

Designation: E 705–96 Designation: E705 – 08

Standard Test Method for Measuring Reaction Rates by Radioactivation of Neptunium-237¹

This standard is issued under the fixed designation E705; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers procedures for measuring reaction rates by assaying a fission product (F.P.) from the fission reaction $^{237}Np(n,f)F.P.$

1.2 The reaction is useful for measuring neutrons with energies from approximately 0.7 to 6 MeV and for irradiation times up to 30 to 40 years.

1.3 Equivalent fission neutron fluence rates as defined in Practice E 261E261 can be determined.

1.4 Detailed procedures for other fast-neutron detectors are referenced in Practice E 261E261.

1.5

1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

<u>1.6</u> This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

E170 Terminology Relating to Radiation Measurements and Dosimetry

E181 Test Methods for Detector Calibration and Analysis of Radionuclides

E261 Practice for Determining Neutron Fluence, Fluence Rate, Fluence, and Spectra by Radioactivation Techniques

E262 Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

E320 Test Methods Method for Cesium-137 in Nuclear Fuel Solutions by Radiochemical Analysis³

E393 Test Method for Measuring Reaction Rates by Analysis of Barium-140 from Fission Dosimeters²

E482Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance, E706 (IID)² Test Method for Massuring Pagetion Pater by Analysis of Parium 140 From Eission Desimeters

Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters 11baf87546b88/astm-e705-08 E704 Test Method for Measuring Reaction Rates by Radioactivation of Uranium-238

E844 Guide for Sensor Set Design and Irradiation for Reactor Surveillance, E 706 (IIC)

E944 Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, E 706 (IIA)

E1005 Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance, E 706 (IIIA)

E1018 Guide for Application of ASTM Evaluated Cross Section Data File, Matrix E706 (IIB)

3. Terminology

3.1 Definitions:3.1.1Refer to Terminology E 170E 1703.1.1 Refer to Terminology E170.

³ Withdrawn. The last approved version of this historical standard is referenced on www.astm.org.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This test method is under the jurisdiction of ASTM Committee <u>E-10-E10</u> on Nuclear Technology and Applications and is the direct responsibility of Subcommittee E10.05 on Nuclear Radiation Metrology.

Current edition approved Jan. 10, 1996. Published March 1996. Originally published as E 705–79. Last previous edition E 705–90. Current edition approved July 1, 2008. Published October 2008. Originally approved in 1979. Last previous edition approved 2002 as E705–96 (2002). DOI: 10.1520/E0705-08.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards Vol 12.02.volume information, refer to the standard's Document Summary page on the ASTM website.

³ Vanadium-encapsulated monitors of high purity are available from the Isotope Sales Div., Oak Ridge, TN 37830.

4. Summary of Test Method

4.1 High-purity ²³⁷Np (<40 ppm fissionable impurity) is irradiated in a fast-neutron field, thereby producing radioactive fission products from the reaction 237 Np(n,f)F.P.

4.2 Various fission products such as ¹³⁷Cs-^{137m}Ba, ¹¹⁴⁰Ba-¹⁴⁰La, ⁹⁵Zr, and ¹⁴⁴Ce can be assayed depending on the length of irradiation, purpose of the experiment, etc.

4.3 The gamma rays emitted through radioactive decay are counted and the reaction rate, as defined in Practice E = 261E261, is calculated from the decay rate and the irradiation conditions.

4.4 The neutron fluence rate for neutrons with energies from approximately 0.7 to 6 MeV can then be calculated from the spectral-weighted neutron activation cross section as defined in Practice E 261E261.

4.5 A parallel procedure that uses 238 U instead of 237 Np is given in Test Method E 704E704.

5. Significance and Use

5.1Refer to Practice E 261E 261

5.1 Refer to Practice E261 for a general discussion of the determination of fast-neutron fluence rate with fission detectors.

5.2 237 Np is available as metal foil, wire, or oxide powder. For further information, see Guide E 844E844. It is usually encapsulated in a suitable container to prevent loss of, and contamination by, the ²³⁷Np and its fission products.⁴

5.3 One or more fission products can be assayed. Pertinent data for relevant fission products are given in Table 1 and Table 2. 5.3.1 ¹³⁷Cs-¹³⁷mBa is chosen frequently for long irradiations. Radioactive products ¹³⁴Cs and ¹³⁶Cs may be present, which can interfere with the counting of the 0.662 MeV 137 Cs- 137m Ba gamma ray (see Test Methods E 320E320).

5.3.2 140 Ba- 140 La is chosen frequently for short irradiations (see Test Method E 393E393).

5.3.3 ⁹⁵Zr can be counted directly, following chemical separation, or with its daughter ⁹⁵Nb, using a high-resolution gamma detector system.

5.3.4 ¹⁴⁴Ce is a high-yield fission product applicable to 2- to 3-year irradiations.

5.4 It is necessary to surround the 237 Np monitor with a thermal neutron absorber to minimize fission product production from trace quantities of fissionable nuclides in the ²³⁷Np target and from ²³⁸Np and ²³⁸Pu from (n,γ) reactions in the ²³⁷Np material. Assay of ²³⁸Pu and ²³⁹Pu concentration is recommended when a significant contribution is expected.

5.4.1 Fission product production in a light-water reactor by neutron activation products ²³⁸Np and ²³⁸Pu has been calculated to be insignificant (1.2 %), compared to that from 237 Np(n,f), for an irradiation period of 12 years at a fast neutron (E > 1 MeV)

⁴ The boldface numbers in parentheses refer to the list of references appended to this test method.

⁴ The sole source of supply of Vanadium-encapsulated monitors of high purity known to the committee at this time in the United States is Isotope Sales Div., Oak Ridge, TN 37830. In Europe, the sole source of supply is European Commission, JRC, Institute for Reference Materials and Measurements (IRMM) Reference Materials Unit Retieseweg 111, B-2440 Geel, Belgium. If you are aware of alternative suppliers, please provide this information to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend.

TABLE 1 Recommended Nuclear Parameters for Certain Fission

Products									
Fission Product	Parent Half-Life ^A (6)	Primary Radiation ^A (7) (keV)	γ Probability of Decay ^A (7)	Maximum Useful Irradiation Duration					
⁹⁵ Zr	64.04 (4) d	724.199 (5)	0.4417 (19)	6 months					
⁹⁵ Zr	64.032 (6) d	724.192 (4)	0.4427 (22)	6 months					
		756.729 (12)	0.5446						
		756.725 (12)	0.5438						
⁹⁹ Mo	65.94 (1) h	0.1213	739.5	300 hours					
⁹⁹ Mo	2.7489 (6) d	739.500 (17)	0.1213 (22)	300 hours					
		0.0435	777.921						
		777.921 (20)	0.0426 (8)						
¹⁰³ Ru	39.254 (8) d	497.084 (10)	0.910 (23)	4 months					
¹⁰³ Ru	<u>39.26 (2) d</u>	497.084 (6)	0.910 (12)	4 months					
137 Cs	30.0 (2) yr	661.660 (3)^B	0.8510 ^B	30-40 years					
137Cs	<u>30.3 (5) yr</u>	<u>661.657 (3)^B</u>	<u>0.8510^B</u>	30-40 years					
¹⁴⁰ Ba- ¹⁴⁰ La		537.31 (4)	0.2439	1-1.5 months					
¹⁴⁰ Ba- ¹⁴⁰ La	12.752 (5) d	537.261 (9)	0.2439 (23)	1-1.5 months					
		1596.54 (14)	0.9540^C						
		1596.21 (4)	0.954 (14) ^C						
			1.1515 ^D						
144 Ce	284.9 (2) d	133.515 (8)	0.1109 (4)	2 3 years					
¹⁴⁴ Ce	289.91 (5) d	133.515 (2)	<u>0.1109 (10)</u>	2–3 years					

^AThe lightface numbers in parentheses are the magnitude of plus or minus uncertainties in the last digit(s) listed.

^BWith ^{137m}Ba (2.552 min) in equilibrium. ^CProbability of daughter ¹⁴⁰La decay.

^DWith ¹⁴⁰La (1.67801 d) in transient equilibrium.

TABLE 2	Recommended	Fission	Yields	for	Certain	Fission
	F	Products	A			

		Products		
Fissile Isotope	Neutron Energy	Reaction Product	Type Yield	ENDF/B-VII ^{B,A} Fission Yield (%)
237Np(n,f) 237Np(n,f)	0.5 MeV <u>0.5 MeV</u>	95Zr 95Zr 99Mo 103Ru 103Ru 137Cs 137mBa 137mBa 137mBa 140Ba 140Ba 140La 144Ce	[공 꿇l코 ⊉[공 꿇l코 ⊉]공 꿇[공 꿇]공 꿇]공 중	$\begin{array}{r} 5.68896 \pm 2.8 \ \% \\ \overline{5.66915 \pm 2 \ \%} \\ \overline{6.11547 \pm 4 \ \%} \\ \overline{6.11804 \pm 4 \ \%} \\ \overline{5.5533 \pm 2.8 \ \%} \\ \overline{5.5533 \pm 2.8 \ \%} \\ \overline{6.16077 \pm 2.8 \ \%} \\ \overline{6.17171 \pm 2 \ \%} \\ \overline{1.141e.3 \pm 64 \ \%} \\ \overline{6.17171 \pm 2 \ \%} \\ \overline{6.17171 \pm 2 \ \%} \\ \overline{6.121e.3 \pm 64 \ \%} \\ \overline{5.121e.3 \pm 64 \ \%} \\ \overline{5.121e.3 \pm 64 \ \%} \\ \overline{4.12087 \pm 2 \ \%} \\ \overline{4.13935 \pm 2 \ \%} \end{array}$

^AEnglSpeciand, T. R., and RI idssuer, B. F., on ENDF-349 Evaluation aned Compi Nuclear Dation of a Fission Prodle ENDF/B-VII.0." Nuclear Dat-Yia Sheldets, Los A J.K. Tulamos Natl Editonar. Vol-La. 107 December 2006. Datory, Los Aa availamos, NM, rblep orn t-LA-UR-94-3106,he ENDF/B-349, OeVII websitee at URL:http://www.nndc.bnl.gov/exfor-1994/endf00.htm.

^BAll yield data given as a %; RC represents a cumulative yield; RI represents an independent vield.

fluence rate of 1×10^{11} cm⁻² ·s⁻¹, provided the ²³⁷Np is shielded from thermal neutrons (see Fig. 2 of Guide E 844E844).

5.4.2 Fission product production from photonuclear reactions, that is, (γ, f) reactions, while negligible near-power and

research reactor cores, can be large for deep-water penetrations (1).⁵ 5.5 Good agreement between neutron fluence measured by 237 Np fission and the 54 Fe(n,p) 54 Mn reaction has been demonstrated (2). The reaction 237 Np(n,f) F.P. is useful since it is responsive to a broader range of neutron energies than most threshold detectors.

5.6 The ²³⁷Np fission neutron spectrum-averaged cross section in several benchmark neutron fields are given in Table 3 of Practice E 261E261. Sources for the latest recommended cross sections are given in Guide E 1018E1018. In the case of the 237 Np(n,f)F.P. reaction, the recommended cross section source is the ENDF/B-VI cross section (MAT = 9346) revision 1 (3). Fig. 1 shows a plot of the recommended cross section versus neutron energy for the fast-neutron reaction 237 Np(n,f)F.P.

NOTE 1-The data are taken from the Evaluated Nuclear Data file, ENDF/B-VI, rather than the later ENDF/B-VII. This is in accordance with Guide E1018 Guide for Application of ASTM Evaluated Cross Section Data File, 6.1. since the later ENDF/B-VII data files do not include covariance information. For more details see Section H of (10)

6. Apparatus

6.1 Gamma-Ray Detection Equipment that can be used to accurately measure the decay rate of fission product activity are the following two types (4):

6.1.1 NaI(T1) Gamma-Ray Scintillation Spectrometer(see Test Methods E 181 and E 1005E 181E 1005 (see Test Methods E181 and E1005).

6.1.2 Germanium Gamma-Ray Spectrometer (see Test Methods E 181 and E 1005E 181E 1005(see Test Methods E181 and E1005)—Because of its high resolution, the germanium detector is useful when contaminant activities are present.

6.2 *Balance*, providing the accuracy and precision required by the experiment.

6.3 Digital Computer, useful for data analysis, but is not necessary (optional).

7. Materials

7.1 Neptunium-237 Alloy or Oxide—High-purity ²³⁷Np in the form of alloy wire, foil, or oxide powder is available.

7.1.1 The ²³⁷Np target material should be furnished with a certificate of analysis indicating any impurity concentrations.

7.2 Encapsulating Materials—Brass, stainless steel, copper, aluminum, vanadium, and quartz have been used as primary encapsulating materials. The container should be constructed in such a manner that it will not create significant perturbation of the neutron spectrum or fluence rate and that it may be opened easily, especially if the capsule is to be opened remotely. Certain encapsulation materials, for example, quartz and vanadium, allow gamma-ray counting without opening the capsule since there are no interfering activities.

⁵ The terms "fission rate" and "reaction rate" can be used synonymously.

The boldface numbers in parentheses refer to the list of references appended to this test method.