INTERNATIONAL STANDARD

First edition 2017-06

Microbiology of the food chain — Detection and quantification of histamine in fish and fishery products — HPLC method

Microbiologie de la chaîne alimentaire — Détection et quantification de l'histamine dans le poisson et les produits de la pêche — Méthode CLHP **iTeh STANDARD PREVIEW**

(standards.iteh.ai)

<u>ISO 19343:2017</u> https://standards.iteh.ai/catalog/standards/sist/b5a8e3bb-317a-4fa1-8250-7ec65b6626a1/iso-19343-2017

Reference number ISO 19343:2017(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 19343:2017</u> https://standards.iteh.ai/catalog/standards/sist/b5a8e3bb-317a-4fa1-8250-7ec65b6626a1/iso-19343-2017

© ISO 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Forew	rord	iv		
Introd	luction	. v		
1	Scope	1		
2	Normative references	1		
3	Terms and definitions	1		
4	Principle	1		
5	Reagents and materials	1		
6	Apparatus	2		
7	Procedure7.1Sample preparation7.2Extraction7.3Derivatization7.4Purification7.5LC condition7.6Range of standard sample	3 3 3 3 4		
8	Calculation 8.1 Calibration line (curve) 8.2 Histamine quantification	4 4 5		
9	Precision standards.iteh.ai) 9.1 Interlaboratory study 9.2 Repeatability limit 9.3 Beproducibility limit	5 5 5 5		
	Annex A (informative) Recommendations for HPLC separation 7			
	B (informative) Performance characteristics of the method			
Biblio	graphy1	4		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by the European Committee for Standardization (CEN) Technical Committee CEN/TC 275, *Food analysis* — *Horizontal methods*, in collaboration with ISO Technical Committee TC 34, *Food products*, Subcommittee SC 9, *Microbiology* in accordance with the agreement on technical cooperation between ISO and CEN (Vienna Agreement).

Introduction

Histamine is a causative agent of scombroid poisoning or histamine fish poisoning. Histamine can be present mainly in *Scombridae* (tuna, mackerel) and *Clupeidae* (herring, sardine), species which contain a high level of free histidine. Histamine is formed through the decarboxylation of histidine by microbiological histidine decarboxylase.

Histamine [2-(1H-imidazol-5-yl)ethanamine] is defined as a biologically active low molecular weight basic nitrogenous molecule. The consumption of food containing significant concentration of histamine can cause symptoms similar to those associated to food allergies.

This document was developed in response to the need to standardize a method for histamine detection and quantification in fish and fishery products, in particular for European Regulation 2073/2005^[1] on microbiological criteria for foodstuffs.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 19343:2017</u> https://standards.iteh.ai/catalog/standards/sist/b5a8e3bb-317a-4fa1-8250-7ec65b6626a1/iso-19343-2017

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 19343:2017 https://standards.iteh.ai/catalog/standards/sist/b5a8e3bb-317a-4fa1-8250-7ec65b6626a1/iso-19343-2017

Microbiology of the food chain — Detection and quantification of histamine in fish and fishery products — HPLC method

WARNING — Persons using this document should be familiar with normal laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices.

1 Scope

This document specifies a high performance liquid chromatography (HPLC) method to analyse histamine in fish and fishery products (fish sauces, fish maturated by enzyme in brine, etc.) intended for human consumption.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3696, Water for analytical laboratory use – Specification and test methods

3 Terms and definitions

ISO 19343:2017

https://standards.iteh.ai/catalog/standards/sist/b5a8e3bb-317a-4fa1-8250-No terms and definitions are listed in this document₃₄₃₋₂₀₁₇

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

4 Principle

This method enables the separation of histamine among biogenic amines in fish and fishery products. The sample is extracted by mixing with perchloric acid. Precolumn derivatization is performed using dansyl chloride. The biogenic amines and the components in the solution are separated by HPLC with an appropriate column, using UV detection. Histamine mass concentration is calculated from the peak area ratio of histamine and internal standard with a calibration curve.

5 Reagents and materials

Use only reagents of recognized analytical grade and water complying with grade 1 of ISO 3696, unless otherwise specified. Solvents shall be of quality for HPLC analysis, unless otherwise specified.

- **5.1** Acetone, CH₃COCH₃.
- **5.2** Acetonitrile, CH₃CN.
- **5.3 Toluene**, C₇H₈.

5.4 Water, HPLC grade.

- 5.5 Water, distilled or equivalent.
- 5.6 Nitrogen, gas.
- **5.7 Perchloric acid**, c(HClO₄) = 0,2 mol/l (recommended).

Dilute 19,5 ml of HClO₄ 65 % or 17,2 ml of HClO₄ 70 % to 1 000 ml of water (5.5). The solution is stable for six months if stored at room temperature (15° C to 25° C).

5.8 Saturated sodium carbonate solution, Na₂CO₃.

Dissolve 110 g of sodium carbonate in about 150 ml of water (5.5). The solution is in excess and stable for three months if stored at 5 °C \pm 3°C.

5.9 Dansyl chloride solution, $\rho(C_{12}H_{12}CINO_2S) = 7,5 \text{ mg/ml}.$

Dissolve 0,375 g of dansyl chloride in 50 ml of acetone (5.1). The solution is stable for three weeks if stored in the dark at a temperature lower than < -18 °C.

5.10 L-proline solution, $\rho(C_5H_9NO_2) = 100 \text{ mg/ml}$.

Dissolve 1 g of L-proline in 10 ml of water (5.5). The solution is stable for three weeks if stored at $5 \degree C \pm 3\degree C$.

(standards.iteh.ai)

5.11 Histamine stock solution, $\rho(C_5H_9N_3) = 12,5 \text{ mg/ml}$.

Dissolve 1,034 g of histamine dihydrochloride in 50 ml of water (5.5). The solution is stable for one year if stored at < -18 °C. 7ec65b6626a1/iso-19343-2017

5.12 Internal standard (IS) 1,7-diaminoheptane stock solution, $\rho(C_7H_{18}N_2) = 6,4$ mg/ml. (recommended).

Dissolve 0,320 g of 1,7-diaminoheptane in 50 ml of water (5.5). The solution is stable for three weeks if stored at 5 °C \pm 3°C.

6 Apparatus

- 6.1 Grinder, e.g. mixer, blender.
- 6.2 Balances, (precisions 0,1 g and 0,001 g).
- 6.3 Crusher, (homogenizer) with metallic rods.
- **6.4 Centrifuge**, refrigerated, capable of a centrifugal force of 8 000*g*.
- 6.5 Centrifuge tubes, (plastic) with closing caps.
- **6.6 Pipettes,** ranges 20 μl to 200 μl and 100 μl to 1 000 μl.
- 6.7 Tubes, (temperature resistant glass) with closing caps.
- 6.8 Vortex.

- 6.9 **Water bath**, 60 °C \pm 1 °C with dark cover or equivalent.
- **6.10 Refrigerator,** capable of temperatures 5°C ± 3 °C.
- **6.11 Freezer,** capable of temperatures < -18°C.
- 6.12 Nitrogen evaporator.
- 6.13 Needles, 20G 0,9 mm disposable.
- **6.14** Filters, 0,2 μm disposable [Polytetrafluoroethylene (PTFE)/Polypropylene (PP)].
- 6.15 Syringes, 2 ml disposable.
- **6.16 LC** system, pump, refrigerated autosampler, column oven (25 °C ± 2°C), UV detector λ = 254 nm (UV).
- **6.17** LC column, Kromasil \mathbb{R}^{1} C18 5 µm 100 Å (25 cm × 4,6 mm) or equivalent.
- **6.18** Glass autosampler vial, 2 ml with insert (200 µl) and cap.

7 **Procedure** iTeh STANDARD PREVIEW

7.1 Sample preparation (standards.iteh.ai)

Homogenize the sample (fish flesh) by grinding in a mixer (6.1). Transfer a test portion of 5 g ± 0,1 g of fish homogenate to a centrifuge tube (6.5) SO 19345:2017 https://standards.iteh.ai/catalog/standards/sist/b5a8e3bb-317a-4fa1-8250-

7ec65b6626a1/iso-19343-2017

7.2 Extraction

Add 10 ml of perchloric acid (5.7) and 100 μ l of 1,7-diaminoheptane (5.12) to 5 g of fish in the centrifuge tube and mix (6.3). After complete homogenization, centrifuge (6.4) at 8 000g for 5 min at 4 °C.

7.3 Derivatization

Transfer 100 μ l of the supernatant into a tube (6.7), add 300 μ l of sodium carbonate solution (5.8) and 400 μ l of Dansyl chloride solution (5.9).

Vortex (6.8) and incubate (6.9) for 5 min in the dark at 60 °C.

Cool the tube under cold tap water and add 100 μ l of L-proline solution (5.10).

Vortex (6.8) and place the tube in the dark for 15 min.

NOTE Supernatant can be stored at < -18 °C for one week.

7.4 Purification

Add 500 μ l of toluene (5.3) and vortex (6.8).

NOTE 1 Manipulation can be stopped at this step with storage at < -18 °C for one week maximum.

Kromasil® is the trademark of a product supplied by Sigma-Aldrich Co. LLC. This information is given for 1) the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead to the same results.

Transfer as much as possible of the upper organic phase into a new tube (6.7) and dry it in the fume hood with a stream of nitrogen (6.12).

NOTE 2 The organic phase toluene contains the derivatized histamine and not the "non-organic" (aqueous) phase. The organic phase can easily be recovered by freezing the aqueous phase (< -18 °C for 30 min minimum). In addition, freezing can improve the quality of the upper organic phase.

Re-suspend the dry tube with 200 μ l of acetonitrile (5.2)/water (5.4) (60/40 volume fraction) and vortex (6.8).

Filter the solution (6.13, 6.14 and 6.15) in a glass autosampler vial (6.18) and fill the autosampler (6.16).

7.5 LC condition

HPLC and UHPLC systems can be used. Indicative parameters depending upon the instrument and the column are given in <u>Annex A</u>.

7.6 Range of standard sample

Standard samples should be prepared by supplementation of volumes of histamine stock solution (5.11) to homogenate samples prepared according to 7.1 from a histamine free matrix.

Add the volumes as specified in <u>Table 1</u> to the histamine free sample and proceed to the extraction step $(\underline{7.2})$ and thus derivatization $(\underline{7.3})$, purification $(\underline{7.4})$ and LC $(\underline{7.5})$.

To avoid matrix effect and bias, carry out a calibration line on the same matrix (histamine free) as the sample analysed.

(standards.iteh.ai)

ICO 10242-2017			
https://standards.iteh.ai/catalog/st 7ec65b662	Volume of the histamine andards/sstylp3a50550-51/a-pa1-8250 6a1/iso-19343-2017		
mg/kg	μl		
0	0		
25	10		
50	20		
100	40		
250	100		
500	200		

8 Calculation

8.1 Calibration line (curve)

Perform a calibration function by linear regression analysis, using histamine standard samples (7.6) and an internal standard with Formula (1):

$$f(C_{\rm HS}) = \frac{A_{\rm HS}}{A_{\rm IS}} \times C_{\rm HS}$$
(1)

where

 $C_{\rm HS}$ is the mass concentration of histamine in the standard sample (mg/kg);

- *A*_{HS} is the area of the histamine standard peak;
- *A*_{IS} is the area of the internal standard peak.

8.2 Histamine quantification

Calculate the concentration of histamine in the sample by using <u>Formula (2)</u> (regression equation):

$$C_{\rm H} = \frac{\frac{A_{\rm H}}{A_{\rm IS}} \times \frac{5}{m}}{a} \tag{2}$$

where

- $C_{\rm H}$ is the measured mass concentration of histamine in the sample (mg/kg);
- $A_{\rm H}$ is the area of the histamine peak;
- *A*_{IS} is the area of the internal standard peak;
- *a* is the slope of the calibration line;
- *m* is the mass of the sample taken. **DARD PREVIEW**

The mass, *m*, usually corresponds to 5 gbut if the sample concentration falls outside the range of the standard samples, conduct a new analysis with a smaller test portion in order to be in the linear range regarding representativity of the sample. ISO 19343:2017

https://standards.iteh.ai/catalog/standards/sist/b5a8e3bb-317a-4fa1-8250-NOTE If the matrix is complex or-difficult to obtain in free-histamine condition (e.g. fishmeal, fish sauce, etc.), the spiking can be performed directly using the standard addition method.

9 Precision

9.1 Interlaboratory study

The results of the interlaboratory study to determine the precision of the method are summarized in <u>Annex B</u>. The values derived from the interlaboratory study may not be applicable to concentration ranges and food types other than those given in <u>Annex B</u>.

9.2 Repeatability limit

The absolute difference between two independent single test results or the ratio of the higher to the lower of the two test results on the normal scale, obtained using the same method on identical test material in the same laboratory by the same operator using the same apparatus within the shortest feasible time interval, will in not more than 5 % of cases exceed the repeatability limit r. The repeatability values for the collaborative test are given in <u>Table 2</u>.

9.3 Reproducibility limit

The absolute difference between two single test results obtained using the same method on identical test material in different laboratories with different operators using different equipment, will in not more than 5 % of cases exceed the reproducibility limit R. The reproducibility values for the collaborative test are given in <u>Table 2</u>.