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Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Cyber Security (CYBER).

Modal verbs terminology

In the present document “should", "should not”, "may", "need not", "will™, "will not", "can™ and "cannot" are to be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
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1 Scope

The present document gives an overview of the impact of quantum computing on symmetric algorithms such as block
ciphers and hash functions. It discusses the practicality of parallelising Grover's algorithm, the effect of limiting
quantum circuit depth, and the overhead from quantum error correction.

The present document supplements ETSI GR QSC 006 [i.1] by summarizing quantum resource estimates for attacks
against widely used symmetric algorithms with reasonable circuit depth assumptions. It also provides guidance on the
need to increase symmetric key lengths for a range of different use cases.

2 References

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.
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[i.9] NIST FIPS 197: "Advanced Encryption Standard (AES)".
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[i.11] NIST FIPS 202: "SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions".
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3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:
circuit depth: number of sequential operations that are performed during the execution of a quantum circuit
circuit width: maximum number of operational qubits required during the execution of a quantum circuit

coherence time: length of time two qubits will remain in an entangled state before the external environment introduces
errors

magic state ditillation: process for producing quantum states known as 'magic states', which are required to effect
particular quantum gates under a given Quantum Error Correction (QEC) scheme

EXAMPLE: When applying the surface code for QEC, magic state distillation is used to produce T-gates,
which can then be composed to other more complex gates, such as the Toffoli gate.

oracle function: black box quantum operator that transforms a quantum state |x) — |f(x))
qubit (logical): unit of quantum information analogous to a bit in classical computing
qubit (physical): physical device that behaves as a two-state quantum system

surface code: widely studied quantum error correction scheme that lays out physical qubits in a grid of data and
measurement qubits to produce a single logical qubit

NOTE: See Annex A.
T-gate: 2-qubit gate that can be composed to produce more complex gates, such as the Toffoli gate
Toffoli gate: 3-qubit gate that is an analogue of the AND gate in classical computing

uncomputation: process of reversing steps in a quantum circuit to cancel out intermediate quantum states that may
have been produced during calculations
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3.2 Symbols

For the purposes of the present document, the following symbols apply:

O(f(x)) Big O notation. If g(x) = O(f(x)), then g(x) is bounded above asymptotically by f(x), up to a
constant multiple. More precisely, there is some Xo and some positive value M such that
la(x)| < Mf(x) for all X > Xo.

Q(f(x)) Big Omega notation. If g(x) = Q(f(x)), then g(x) is bounded below asymptotically by f(x), up to a
constant multiple. More precisely, there is some Xo and some positive value M such that
lg(x)] > Mf(x) for all X > Xo.

[x] Floor of x: the largest integer less than or equal to x.
&b Logical exclusive or (XOR) operation.
lp) A ket in bra-ket notation. Denotes a quantum state.

EXAMPLE 1:  |0) denotes a single qubit in the collapsed basis state corresponding to a classical value of '0".

EXAMPLE 2: |0) + |1)) denotes a single qubit in equal superposition between the basis states |0) and |1).

1
5 (

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AES Advanced Encryption Standard
ASIC Application Specific Integrated Circuit
ECDH Elliptic Curve Diffie-Hellman
ECDSA Elliptic Curve Digital Signature Algorithm
NIST National Institute of Standards and Technology
QEC Quantum Error Correction
RSA Public key algorithm invented by Rivest, Shamir and Adleman
SHA Secure Hash Algorithm
4 Introduction

Traditional public-key algorithms such as RSA [i.2], [i.4], Elliptic Curve Diffie-Hellman (ECDH) [i.3] and the Elliptic
Curve Digital Signature Algorithm (ECDSA) [i.4] are known to be vulnerable to polynomial-time quantum attacks via
Shor's algorithm [i.5]. It has been estimated that 2048-bit RSA could be broken in 8 hours on a device with 20 million
physical qubits [i.6] and that 256-bit ECDSA could be broken in a day on a device with 13 million physical qubits [i.7].
As a consequence, the US National Institute for Standards and Technology (NIST) are currently standardizing the next
generation of public-key algorithms [i.8].

Symmetric algorithms such as the AES [i.9] block cipher and the SHA-2 [i.10] and SHA-3 [i.11] hash functions are
believed to be immune to Shor. In most cases, the best-known quantum attack uses Grover's algorithm [i.12]. Grover
provides a generic square-root speed-up in the number of queries needed in an unstructured search problem (see
clause 5.1). This means that Grover could be used to find the 256-bit key for AES-256 with around 228 quantum
queries to the AES algorithm compared to the 225 queries expected for classical exhaustion.

However, assessing the cost of Grover in terms of the number of queries to the symmetric algorithm can be misleading.
It neglects overheads from:

. The cost of implementing the algorithm queried by Grover as a reversible quantum circuit (see clause 5.2);
e The cost of parallelising Grover so that a solution is found in a reasonable amount of time (see clause 5.3); and
. The cost of quantum error correction so that Grover succeeds with high enough probability (see clause 5.5).

ETSI GR QSC 006 [i.1] argues that 256-bit block ciphers and hash functions will remain secure until at least 2050 by
making conservative assumptions about the algorithm implementation, quantum error correction and quantum hardware
performance, and then estimating the amount of parallelisation available if an adversary is willing to spend a fraction of
their Gross Domestic Product on the attack.
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The present document takes a different approach. It estimates the resources required to attack standardized block
ciphers (see clause 6.2) and hash functions (see clause 6.3) in a reasonable amount of time using the current state-of-
the-art for algorithm implementations and the most well-studied quantum error correction scheme (the surface code).

The present document also considers the impact of other quantum attacks on symmetric cryptography such as quantum
collision finding (see clause 7.1) and Simon's algorithm (see clause 7.2). Finally, it includes an assessment of the overall
threat to symmetric algorithms from quantum computing and concludes that migration efforts should be focused on
asymmetric cryptography (see clause 8).

5 Grover's algorithm

51 Overview

Grover's search algorithm is a quantum algorithm that can be applied to generic unstructured search problems to give an
asymptotic square-root speed-up over classical algorithms in terms of the number of queries needed. It has been shown
to be asymptotically optimal for such problems [i.13].

Let f: X — {0,1} be a function defined on a set X of size |X| = N. The unstructured search problem is to find an input
value x € X such that f(x) = 1, when the function f does not have any properties that allow the input set to be
searched more efficiently than simply evaluating f at values from X. If f(x) = 1 for a unique x € X, then it would take
classical search algorithms N /2 queries on average to find the solution x. Grover's algorithm, on the other hand, will

find x with high probability after around (rr/4)+v/N quantum queries to f.

NOTE 1: If there are M solutions to f(x) = 1, then a classical search algorithm will take O (N /M) queries to f to
find any such solution x and Grover's algorithm will find a solution with high probability after

(m/4)/N/M quantum queries [i.14].

This setup can be applied naturally to the key recovery problem for block ciphers where a matched pair of input
plaintext and output ciphertext values is known; that is, where Enc(K, P) = C for an unknown key K. Let X be the set
of all possible key values and define the function f: X — {0,1} by:

1 ifEnc(x,P) =C,
0 otherwise.

foo ={

EXAMPLE: For AES-128, the set of all possible key values has size N = 2128 so Grover's algorithm would
require on the order of 2% quantum queries to recover the key.

NOTE 2: Multiple matched input plaintext and output ciphertext pairs might be needed to uniquely determine the
key (see clause 6.2.1.3).

However, comparing the headline figures of 2128 classical queries with 2% quantum queries neglects significant details
of implementing Grover's algorithm on a quantum computer. The remainder of this clause will describe these details
and discuss the impact they have on estimating the required resources for an attack.

5.2 Oracle implementation

Grover's algorithm involves iterated queries to the oracle function f, which needs to be implemented on the quantum
computer.

The internal state of a quantum computer is often described in terms of qubits; that is, the quantum analogue of bits in a
classical computer. A quantum algorithm is then described as a quantum circuit built out of fundamental quantum gates
that operate on a few qubits at a time. The depth of a quantum circuit is the maximum number of sequential gate
operations that are performed during the computation.

The laws of quantum physics mean that all quantum gates, and all quantum circuits, need to be reversible. This means
that while some fundamental classical gates, such as XOR, translate directly to fundamental quantum gates, others, such
as AND, do not. Instead, the quantum analogue of the classical AND gate is the 3-qubit Toffoli gate which is in turn
constructed from several 1- and 2-qubit gates.
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NOTE: The set of fundamental quantum gates supported, and their relative costs, will be dependent on the
underlying hardware so optimized implementations will need to be tailored to specific platforms.

The reversibility of quantum circuits also means that any qubits used for intermediate calculations cannot simply be
zeroed before re-use or the final measurement step; they need to be carefully uncomputed. This typically involves
performing the inverse circuit which adds further overheads to the implementation of the quantum oracle, both in the
number of required qubits and the depth of the circuit.

5.3 Parallelisation

In a classical brute force search, the probability of success is directly proportional to the runtime of the search: reducing
the runtime by a factor of S reduces the probability of success by the same factor, because the proportion of the input
space that can be explored is reduced by a factor of S. From a different perspective, the input space could be divided
between Sprocessors, with each having a probability of success reduced by a factor of S This means that parallelising
classical search by increasing the computational resources can reduce the time it takes to find a solution without
changing the total amount of work needed.

The same is not true for Grover's algorithm: it finds a solution with high probability in O(W) sequential iterations of
the oracle function. There are two approaches for parallelising Grover's algorithm: inner and outer parallelisation.

. Inner parallelisation partitions the search space and performs a separate run of Grover's algorithm for each
partition. Reducing the runtime by a factor of S allows searching a space of size N/S? with high success
probability, therefore requiring S? processors to search the entire space.

e  Outer parallelisation reduces the number of iterations of the oracle function for each instance, reducing the
probability of success of each individual instance and increasing the overall number of required instances. For
large S, reducing the number of oracle iterations by a factor of S in a Grover run reduces the probability of
success by a factor of $2 [i.13], so it would require S% processors to achieve the same overall success
probability.

For both approaches, in order to reduce the time it takes to find a solution by a factor of S, it is necessary to increase the
computational resources by a factor of $2. That is, the total amount of work increases as more parallelisation is applied.

One advantage of inner parallelisation is that it reduces the impact of spurious results (see clause 6.2.1.3) since each
instance recovers its own potential solution. If the work is partitioned in such a way that the correct key is in a different
section of the search space from any spurious results, then it will still be recovered.

54 Maximum depth

During a single Grover instance, queries to the oracle function are made sequentially so the time taken to recover a
solution depends on the circuit depth for Grover; that is, the maximum number of sequential operations. When
estimating the security implications of Grover's algorithm, it is reasonable to place bounds on the length of time an
adversary will be prepared to wait. In combination with estimates for plausible cycle times (see clause 5.6), this bounds
the maximum depth of a single Grover run.

The total depth of a Grover run can be estimated as the depth of the circuit for a single query multiplied by the number
of iterations of the circuit. NIST [i.15] have suggested the following maximum circuit depths achievable under various
assumptions:

. 240 which NIST cl [i.15]aimed approximately corresponded to the number of gates that near-term guantum
computing architectures could be expected to serially perform in one year;

. 2%, which NIST cl [i.15]aimed approximately corresponded to the number of gates that current classical
computing architectures could perform serially in 10 years; and

e 29 which NIST cl [i.15]aimed approximately corresponded to the number of gates that atomic scale qubits
with speed of light propagation times could perform in 1 000 years.

In later clauses, the overheads introduced by quantum error correction, and estimates for a single cycle time are
discussed. Estimating a plausible cycle time of 200 ns [i.16], the following maximum circuit depths are included as
useful comparison points:
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