INTERNATIONAL STANDARD

ISO 18752

Third edition 2014-04-01

Rubber hoses and hose assemblies — Wire- or textile-reinforced single-pressure types for hydraulic applications — Specification

Tuyaux et flexibles en caoutchouc — Types hydrauliques avec armature de fils métalliques tressés — Spécifications

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 18752:2014 https://standards.iteh.ai/catalog/standards/sist/e912aeac-11eb-40c4-bac5-96b0f6dabc24/iso-18752-2014

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 18752:2014 https://standards.iteh.ai/catalog/standards/sist/e912aeac-11eb-40c4-bac5-96b0f6dabc24/iso-18752-2014

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Coı	ntents	Page
Fore	eword	iv
1	Scope	1
2	Normative references	1
3	Terms and definitions	2
4	Classification 4.1 Classes 4.2 Grades and types	2
5	Materials and construction 5.1 Hoses 5.2 Hose assemblies	3
6	Dimensions and tolerances 6.1 Diameters 6.2 Cover thickness 6.3 Concentricity	4 6
7	Physical properties 7.1 Fluid resistance of rubber compounds 7.2 Performance requirements	7
8	Frequency of testing STANDARD PREVIEW	10
9	Marking 9.1 Hoses (Standards.iteh.ai) 9.2 Hose assemblies	10
10 11	Recommendations for packaging and storage https://standards.iteh.ai/catalog/standards/sist/e912aeac-11eb-40c4-bac5- Test report 96b0f6dabc24/iso-18752-2014	11
Ann	ex A (normative) Type tests and routine tests	12
Ann	ex B (informative) Production acceptance tests	13
Ann	ex C (informative) Recommendations for tolerances on lengths of hose assemblies	14
Ann	ex D (informative) Information to be provided by hose manufacturer	15
Bibl	iography	16

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 1, *Hoses (rubber and plastics)*.

ISO 18752:2014

This third edition cancels and replaces the second edition (ISO 218752:2012), of which it constitutes a minor revision, to include data of "Class 490" in Table 7.so-18752-2014

Rubber hoses and hose assemblies — Wire- or textilereinforced single-pressure types for hydraulic applications — Specification

1 Scope

This International Standard specifies requirements for ten classes, four grades and seven types of wire-or textile-reinforced hydraulic hoses and hose assemblies of nominal sizes ranging from 5 to 102. Each class has a single maximum working pressure for all sizes. Such hoses are suitable for use with hydraulic fluids HH, HL, HM, HR and HV as defined in ISO 6743-4 at temperatures ranging from -40 °C to +100 °C for types AS, AC, BS and BC and -40 °C to +120 °C for types CS, CC and DC.

This International Standard does not include requirements for the connection ends. It is limited to the performance of hoses and hose assemblies. The hose assembly maximum working pressure is governed by the lowest maximum working pressure of the components.

NOTE It is the responsibility of the user, in consultation with the hose manufacturer, to establish the compatibility of the hose with the fluid to be used.

2 Normative references STANDARD PREVIEW

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.752.2014

https://standards.iteh.ai/catalog/standards/sist/e912aeac-11eb-40c4-bac5-ISO 1402, Rubber and plastics hoses and hose assemblies_-2.Hydrostatic testing

ISO 1817, Rubber, vulcanized or thermoplastic — Determination of the effect of liquids

ISO 4671, Rubber and plastics hoses and hose assemblies — Methods of measurement of the dimensions of hoses and the lengths of hose assemblies

ISO 6803, Rubber or plastics hoses and hose assemblies — Hydraulic-pressure impulse test without flexing

ISO 7233, Rubber and plastics hoses and hose assemblies — Determination of resistance to vacuum

ISO 7326:2006, Rubber and plastics hoses — Assessment of ozone resistance under static conditions

ISO 8033:2006, Rubber and plastics hoses — Determination of adhesion between components

ISO 8330, Rubber and plastics hoses and hose assemblies — Vocabulary

ISO 8331, Rubber and plastics hoses and hose assemblies — Guidelines for selection, storage, use and maintenance

ISO 10619-1, Rubber and plastics hoses and tubing — Measurement of flexibility and stiffness — Part 1: Bending tests at ambient temperature

ISO 10619-2:2011, Rubber and plastics hoses and tubing — Measurement of flexibility and stiffness — Part 2: Bending tests at sub-ambient temperatures

ISO 17165-1, Hydraulic fluid power — Hose assemblies — Part 1: Dimensions and requirements

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 8330 apply.

4 Classification

4.1 Classes

Ten classes of hose are specified, distinguished by their maximum working pressure, as shown in <u>Table 1</u>. Each class may be manufactured in up to 14 nominal sizes.

Table 1 — Classes and nominal sizes

Class	35	70	140	210	250	280	350	420	490	560	
MWP ^a (MPa)	3,5	7	14	21	25	28	35	42	49	56	
MWP ^a (bar)	35	70	140	210	250	280	350	420	490	560	
Nominal size											
5	X	X	X	X	X	X	X	X	N/A	N/A	
6,3	X	X	X	X	X	X	X	X	N/A	N/A	
8	X	X	X	X	X	X	X	X	N/A	N/A	
10	X	X	X	X	AX	DYD	7 X	XXX	N/A	N/A	
12,5	X	X	X	X	X	X	X	X	N/A	N/A	
16	X	X	kst	anxla	rds.it	ek.ai	X	X	X	X	
19	X	X	X	X	X	X	X	X	X	X	
25	X	X ttps://stand	X orde tteb o	ZSO Vcatalog/sta	18752:201	4 /e0122e2c	11ab 40a	X l-bac5	X	X	
31,5	X	X	X 9	6b0f6Xlabc	HIGGI GS/ SISt	52-2 8 14	X	X	X	X	
38	X	X	X	X	X	X	X	X	N/A	N/A	
51	X	X	X	X	X	X	X	X	N/A	N/A	
63	X	X	X	X	X	X	X	N/A	N/A	N/A	
76	X	X	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
102	X	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

NOTE X = Applicable; N/A = Not applicable.

4.2 Grades and types

Hoses are classified into four gradesaccording to their resistance to impulse: A, B, C and D. Each grade is classified by outside diameter into standard types (AS, BS and CS) and compact types (AC, BC, CC and DC), as shown in Table 2.

Maximum working pressure.

Table 2 — Grades and types

		Resistance to impulse							
Grade	Type ^a	Temperature °C	Impulse pressure (% of MWPb)	Minimum number of cycles					
	AS	100	133 %	200 000					
A	AC	100	155 %	200 000					
В	BS	100	133 %	500,000					
D	ВС	100	155 %	500 000					
C	CS	120	122 0/ and 120 0/c	T00.000					
L C	CC	120	133 % and 120 % ^c	500 000					
D	DC	120	133 %	1 000 000					

a Standard or compact, e.g. CS is grade C and standard type.

As shown in $\underline{\text{Table 4}}$ and $\underline{\text{Table 8}}$, standard types have larger outside diameters and larger bend radii and compact types have smaller outside diameters and smaller bend radii.

Each class includes one of each type or both as shown in <u>Table 3</u>.

Table 3 — Type and maximum working pressure

Class		35	70	140	210	+250	280	350	420	490	560
MWPa (M	IPa)	3,5	7	14	21	25	28	35	42	49	56
MWPa (ba	ar)	35	70	140 <u>IS</u>	0 12492:2	<u>)14</u> 250	280	350	420	490	560
Grade	Туре	https://s	standards.ite	0.01.000.1	1 0 1 11 11			0c4-bac5-			
Δ.	AS	X	X	966016da X	bc24/iso-17 X	8752-2014 X	X	X	X	N/A	N/A
A	AC	X	X	X	X	X	X	X	X	N/A	N/A
D	BS	X	X	X	X	X	X	X	X	N/A	N/A
В	ВС	X	X	X	X	X	X	X	X	N/A	N/A
C .	CS	N/A	N/A	N/A	X	X	X	X	X	N/A	N/A
C	CC	N/A	N/A	N/A	X	X	X	X	X	X	X
D	DC	N/A	N/A	N/A	X	X	X	X	X	N/A	N/A

NOTE X = Applicable; N/A = Not applicable.

5 Materials and construction

5.1 Hoses

Hoses shall consist of a hydraulic-fluid-resistant rubber lining, one or multiple layers of steel wire or textile and an oil-, abrasion- and weather-resistant rubber cover. A layer of other materials on the rubber cover is allowed for improved resistance to abrasion or other.

5.2 Hose assemblies

Hose assemblies shall only be manufactured using hose fittings which conform to the requirements of 7.2.1, 7.2.4 and 7.2.5.

b Maximum working pressure.

c 120 % of the MWP shall be used for classes 350, 420, 490 and 560 instead of 133 %.

a Maximum working pressure.

ISO 18752:2014(E)

Follow the manufacturer's instructions for the proper preparation and fabrication of hose assemblies.

6 Dimensions and tolerances

6.1 Diameters

When measured in accordance with ISO 4671, the diameters of hoses shall conform to the values given in <u>Table 4</u>.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 18752:2014 https://standards.iteh.ai/catalog/standards/sist/e912aeac-11eb-40c4-bac5-96b0f6dabc24/iso-18752-2014

-bac5-

Table 4 — Diameters of hoses

																_
	Class 560	Com- pact	I		1			30	36	45	52					
	Clas	Stan- dard	1	I	1	I	I	I	I	I	I	I	I			Ι
	490	Com- pact	1		1		1	30	36	45	52	1				
	Class 490	Stan- dard	1		1		1		1	1		1				
	420	Com- pact	15	15	18	22	24	34	46	20	26	72	77			
	Class 420	Stan- dard	17	19	20	24	27	37	20	54	09	75	80			
	Class 350	Com- pact	15	15	16	21	25	28	36	45	52	26	73			
hose	Class	Stan- dard	17	19	20	23	27	29	38	20	54	09	75	06		
Maximum outside diameter of hose mm	280	Com- pact	15	15	16	19	23	27	32	39	49	26	70			
diame m	Class 280	Stan- dard	13	6	20 170	33	9 A	67	5 /	14	1 /2	3	R	6	/T	E
outside d mm	Class 250	Com- pact	15	15	16	(5 1	taı	n _z d		39	S91	tel	hę?	ાં)		
mnm (Stan- dard	ps://s	6 stand	0 lards	.iteh.	9 ai/ca	talog	SQ-1 g/star	8 <u>752</u> ndarc	2: <u>20</u> 1 ls/Sis	146 t/e91	e 2aea	06 11	leb-	40c4
Maxi	Class 210	Com- pact	11	14	16	19	96b(22	26da 26	te E	4/ <u>iso</u> 68	-187 -187	52-2 9 <u>5</u>	2014 2014			
		Stan- dard	14	17	19	23	26	29	33	41	53	26	72	82		
	140	Com- pact	11	14	15	17	22	25	29	38	49	26	20			
	Class 14(Stan- dard	14	17	19	21	24	29	33	41	54	29	73	84	100	
	Class 70	Com- pact	11	14	15	18	22	25	29	38	45	26	69			
	Clas	Stan- dard	14	17	19	21	24	27	31	40	53	26	72	84	100	
	s 35	Com- pact	11	14	15	17	21	25	28	36	45	26	69			
	Class 35	Stan- dard	14	17	19	21	24	27	31	40	53	29	72	84	100	130
ide neter asses)	m	max.	5,4	2,0	8,5	10,1	13,5	16,7	19,8	26,4	33,0	39,3	52,0	65,1	77,8	103,2
Inside diameter (all classes)	mm	min.	4,6	6,1	7,7	6,3	12,3	15,5	18,6	25,0	31,4	37,7	50,4	63,1	74,6	100,0 103,2
Nom- (inal size		2	6,3	8	10	12,5	16	19	25	31,5	38	51	63	9/	102	

6.2 Cover thickness

When measured in accordance with ISO 4671, the outer cover thickness of hoses shall conform to the values given in $\underline{\text{Table 5}}$. Standard types may be produced with either thick or thin covers, the tolerance limits for thin-cover standard types being the same as the tolerance limits for compact types.

Table 5 — Cover thickness

Nominal	Cover thickness mm										
size	Standard ((thick cover)	Standard (thin cover)	Compact						
	min.	max.	min.	max.	min.	max.					
5	1,5	3,2	0,8	1,5	0,8	1,5					
6,3	1,5	3,2	0,8	1,5	0,8	1,5					
8	1,5	3,2	0,8	1,5	0,8	1,5					
10	1,5	3,2	0,8	1,5	0,8	1,5					
12,5	1,5	3,2	0,8	1,5	0,8	1,5					
16	1,5	3,2	0,8	1,5	0,8	1,5					
19	1,5	3,2	0,8	1,5	0,8	1,5					
25	1,5	4,6	1.0	2,0	1,0	2,0					
31,5	1,8	11 en 5 1	1,0 1,0	2,0	1,0	2,0					
38	1,8	4,6 (St	andørds.	iteh,si)	1,3	2,5					
51	1,8	4,6	1,3	2,5	1,3	2,5					
63	1,8	5,0 ttps://standards.iteh.a	i/catalog/standards/	<u>014</u> sist/e912aeac-11eb	-40c4-bac5-	_					
76	1,8	1 *	6b0f6da bc 24/iso-1		_	_					
102	1,8	5,0	_	_	_	_					

6.3 Concentricity

When measured in accordance with ISO 4671, the concentricity of hoses shall conform to the values given in $\underline{\text{Table 6}}$.

Table 6 — Concentricity of hoses

	Maximum variation in wall thickness							
Nominal size	between internal diameter and outside diameter	between internal diameter and reinforcement diameter						
	mm	mm						
5 and 6,3	0,8	0,5						
Over 6,3 and up to and including 19	1,0	0,7						
Over 19 and up to and including 63	1,3	0,9						
Over 63	1,5	1,1						

7 Physical properties

7.1 Fluid resistance of rubber compounds

7.1.1 Test pieces

Fluid resistance tests shall be carried out on moulded sheets of lining and cover compound having a minimum thickness 2 mm and a cure state equivalent to that of the hose.

7.1.2 Oil resistance

For all grades, when tested in accordance with ISO 1817 by immersion in IRM 903 oil for 168 h at a temperature of 100 °C, the percentage change in volume ΔV of the lining shall be between 0 % and + 25 % for braid-construction and textile-reinforced hoses and between 0 % and + 60 % for spiral-wire-reinforced hoses.

For all grades, when tested in accordance with ISO 1817 by immersion in IRM 903 oil for 168 h at a temperature of 70 °C, the percentage change in volume ΔV of the cover shall be between 0 % and + 100 %.

7.2 Performance requirements

7.2.1 Hydrostatic requirements

When determined in accordance with ISO 1402, the maximum working pressure, the proof pressure and the minimum burst pressure of hoses and hose assemblies shall conform to the values given in <u>Table 7</u>. (standards.iteh.ai)

 $Table\ 7-Maximum\ working\ pressure, proof\ pressure\ and\ minimum\ burst\ pressure$

Class	Maximum wor	king pressure	3752,2014 P roof p dards/sist/e912acad	ressure	Minimum burst pressure		
Class	МРа	96 bar 6dabc24	/iso-18 MPa -2014	bar	MPa	bar	
35	3,5	35	7	70	14	140	
70	7	70	14	140	28	280	
140	14	140	28	280	56	560	
210	21	210	42	420	84	840	
250	25	250	50	500	100	1 000	
280	28	280	56	560	112	1 120	
350	35	350	70	700	140	1 400	
420	42	420	84	840	168	1 680	
490	49	490	98	980	196	1 960	
560	56	560	112	1 120	224	2 240	

7.2.2 Change in length

When determined in accordance with ISO 1402, the change in length of hoses at the maximum working pressure shall not exceed + 2% or - 4%.

7.2.3 Minimum bend radius

When determined in accordance with ISO 10619-1, the minimum bend radius shall conform to the values given in Table 8.

When bent to the minimum bend radius given in $\underline{\text{Table 8}}$ and measured on the inside of the bend, the flatness shall not exceed 10 % of the original outside diameter.