INTERNATIONAL STANDARD

Second edition 2014-09-15

Microscopes — Imaging distances related to mechanical reference planes —

Part 2: Infinity-corrected optical systems

iTeh STMicroscopes R Tirages mécaniques en fonction des plans mécaniques de référence — (stance 2: Systèmes d'optique corrigés à l'infini

ISO 9345-2:2014 https://standards.iteh.ai/catalog/standards/sist/c55f95a7-2aad-4ad8-87f8-173d3b3ef23f/iso-9345-2-2014

Reference number ISO 9345-2:2014(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9345-2:2014</u> https://standards.iteh.ai/catalog/standards/sist/c55f95a7-2aad-4ad8-87f8-173d3b3ef23f/iso-9345-2-2014

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Page

Contents

Forew	ord		iv			
1	Scope		1			
2	Normative references					
3	Terms and definitions1					
4	Requirements					
	41	Nominal dimensions and tolerances	2			
	4.2	Examples	5			
5	Marki	ng	5			
Annex A (informative) Examples of dimensions in use						
Annex		rmative) Requirements and recommendations for OEM-use of objectives and enses	7			
Biblio	3ibliography					

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9345-2:2014</u> https://standards.iteh.ai/catalog/standards/sist/c55f95a7-2aad-4ad8-87f8-173d3b3ef23f/iso-9345-2-2014

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 172, *Optics and photonics*, Subcommittee SC 5, *Microscopes and endoscopes*.

This second edition cancels and /replaces the first edition (ISO/9345+2:2003) which has been technically
revised.173d3b3ef23fiso-9345-2-2014

ISO 9345 consists of the following parts, under the general title *Microscopes* — *Imaging distances related to mechanical reference planes*:

- Part 1: Tube length 160 mm
- Part 2 Infinity-corrected optical systems

Microscopes — Imaging distances related to mechanical reference planes —

Part 2: Infinity-corrected optical systems

1 Scope

This part of ISO 9345 specifies the imaging distances of objectives, eyepieces and the focal length of "normal" tube lenses of microscopes with infinity-corrected optical systems.

NOTE A specific combination of eyepiece, objective, and tube lens is frequently used to correct aberrations. Therefore the combination of an objective from one manufacturer and the tube lens or eyepiece from another manufacturer, although conforming to this part of ISO 9345, can cause errors in magnification and/or in optical performance.

2 Normative references

The following documents in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 9345-1, *Microscopes* — *Imaging distances related to mechanical reference planes* — *Part 1: Tube length* 160 mm https://standards.iteh.ai/catalog/standards/sist/c55f95a7-2aad-4ad8-87f8-

173d3b3ef23f/iso-9345-2-2014

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

parfocalizing distance of the objective

 \overline{l}_1

distance in air between the object plane (i.e. the uncovered surface of the object) and the locating flange of the objective, when the microscope is in its working position

Note 1 to entry: The parfocalizing distance of the objective is one of the optical interfacing dimensions.

[SOURCE: ISO 10934-1:2002, 2.80.2.4]

Note 2 to entry: See Figure 1, Figure 2 and footnote b in Table 1.

3.2

image distance of the objective

 l_2

distance in air between the objective locating surface and the primary image plane

Note 1 to entry: An infinity-corrected objective alone produces a primary image at infinity. In combination with an infinity-corrected tube lens, the primary image is produced in the back focal plane of this tube lens (see Figure 1).

3.3

parfocalizing distance of the eyepiece

 l_3

distance between the locating flange of the eyepiece and the plane upon which the eyepiece is focused

Note 1 to entry: The plane upon which the eyepiece is focused is coincident with the plane of the final real image of the microscope when the eyepiece is mounted in the viewing tube. The parfocalizing distance of the eyepiece is one of the optical interfacing dimensions, and is commonly 10 mm.

[SOURCE: ISO 10934-1:2002, 2.80.2.3]

Note 2 to entry: This plane is coincident with the primary image plane of the microscope when the eyepiece is mounted in the viewing tube (see Figure 1).

3.4

focal length of the "normal" tube lens

*f*NTL

focal length related to the magnification and the focal length of the objectives which are designed to operate with this tube lens

Requirements 4

4.1 Nominal dimensions and tolerances

The nominal dimensions shall be as given in Table 1 and as illustrated in Figure 1.

(standards.iteh.ai)

ISO 9345-2:2014 https://standards.iteh.ai/catalog/standards/sist/c55f95a7-2aad-4ad8-87f8-173d3b3ef23f/iso-9345-2-2014

Feature	Symbol	Nominal values/range mm	Numerical aperture	Tolerance mm
	<i>l</i> ₁		≤ 0,1	± 0,2c
Derfe collising distance of chiesting h		45 + 15 <i>k</i>	> 0,1 to ≤ 0,25	± 0,06
Parfocalizing distance of objective ^{a,b}		(k = -1, 0, 1, 2, 3, 4)	> 0,25 to \leq 0,45	± 0,03
			> 0,45	± 0,01
Image distance of objective ^d	l ₂	∞		
Parfocalizing distance of eyepiece	l ₃	10		± 0,2
Focal length of "normal" tube lens ^e	<i>f</i> _{NTL}	$150 \leq f_{\rm NTL} \leq 250$		

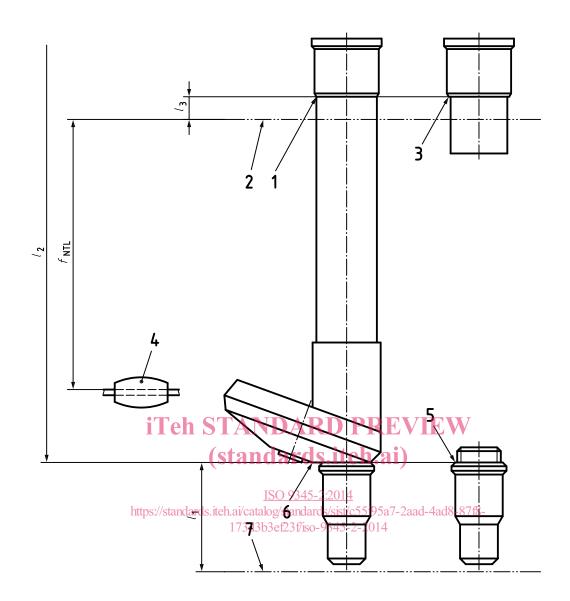
Table 1 — Nominal dimensions and tolerances

^a The choice of a parfocalizing distance for an objective depends on the design concept of the microscope as a whole. The parfocalizing distance, $l_1 = 45$ mm of objectives, has become the standard value for microscopes with tube length 160 mm (see ISO 9345-1) and has been adopted for various existing infinity-corrected microscope systems. Examples of common values in use are given in Annex A.

^b The parfocalizing distance, *l*₁, shown in Figure 1 and Table 1, is intended to apply to objectives when used with uncovered objects (specimens). Objectives for use with objects covered by a cover glass shall have the following parfocalizing distance, to allow for the virtual displacement of the object by the cover glass (see also Figure 2):

$$l_1 + t \frac{n-1}{n} \,\mathrm{mm}$$

where:

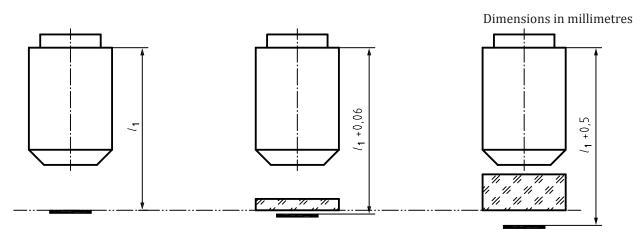

t is the thickness of cover glass; **STANDARD PREVIEW**

n is the refractive index of the cover gasandards.iteh.ai)

^c The tolerance ± 0,2 mm for the parfocalizing distance of objectives with numerical aperture \leq 0,1 does not necessarily apply to objectives with magnifications lower than 4 8345-22014

^d In infinity-corrected optical systems, the primary image is always produced by the objective in combination with a tube lens. The distance between the locating flange of the objective and the tube lens depends on the design of the microscope. The microscope shall have such a design that, in combination with objectives and tube lenses in accordance with this part of ISO 9345, the primary image is produced 10 mm below the eyepiece-locating surface of the viewing tube.

^e The choice of focal length for a "normal" tube lens depends on the design concept of the microscope system. Its value shall be in the range of 150 mm $\leq f_{\text{NTL}} \leq 250$ mm. Examples of common values in use are given in <u>Annex A</u>.


Key

- 1 eyepiece-locating surface of the viewing tube
- 2 primary image plane
- 3 locating flange of the eyepiece
- 4 tube lens
- 5 locating flange of the objective
- 6 objective-locating surface (of the nosepiece)
- 7 object plane

Figure 1 — Locating surfaces, reference planes, and imaging distances

4.2 Examples

Figure 2 illustrates the influence of different cover glass thicknesses on the parfocalizing distance.

Uncovered object t = 0 mm	Object with cover glass t = 0,17 mm thickness n = 1,5	Object with culture chamber <i>t</i> = 1,5 mm bottom thickness <i>n</i> = 1,5			
$l_{\rm CG} = l_1 a$	$l_{\rm CG} = l_1 + 0.06 \ {\rm mm^a}$	$l_{\rm CG} = l_1 + 0.5 \ {\rm mm^a}$			
<i>l</i> _{CG} is the resulting parfocalizing distance due to different cover glass thickness.					

Figure 2 — Examples of parfocalizing distances as function of cover glass thickness

<u>ISO 9345-2:2014</u>

5 Marking

https://standards.iteh.ai/catalog/standards/sist/c55f95a7-2aad-4ad8-87f8-173d3b3ef23f/iso-9345-2-2014

If the magnification of the primary image is changed by built-in optical systems, the tube factor shall be marked on the magnification changing component (stand, tube, etc.); e.g. 1,25 ×.