
**Petroleum and natural gas
industries — Specific requirements
for offshore structures —**

**Part 3:
Topsides structure**

iT Standards
*Industries du pétrole et du gaz naturel — Exigences spécifiques
relatives aux structures en mer —*
(<https://standards.iteh.ai>)

Document Preview

[ISO 19901-3:2014](#)

<https://standards.iteh.ai/catalog/standards/iso/3312f47f-f66f-46f2-9086-1026ff7b169e/iso-19901-3-2014>

Reference number
ISO 19901-3:2014(E)

iTeh Standards

(<https://standards.iteh.ai>)

Document Preview

[ISO 19901-3:2014](#)

<https://standards.iteh.ai/catalog/standards/iso/3312f47f-f66f-46f2-9086-1026ff7b169e/iso-19901-3-2014>

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents

	Page
Foreword	v
Introduction	vii
1 Scope	1
2 Normative references	2
3 Terms and definitions	2
4 Symbols and abbreviated terms	6
4.1 Symbols	6
4.2 Abbreviated terms	8
5 Overall considerations	9
5.1 Design situations	9
5.2 Codes and standards	9
5.3 Deck elevation and green water	10
5.4 Exposure level	10
5.5 Operational considerations	10
5.6 Selecting the design environmental conditions	11
5.7 Assessment of existing topsides structures	11
5.8 Reuse of topsides structure	11
5.9 Modifications and refurbishment	11
6 Design requirements	11
6.1 General	11
6.2 Materials selection	11
6.3 Design conditions	11
6.4 Structural interfaces	12
6.5 Design for serviceability limit states (SLS)	12
6.6 Design for ultimate limit states (ULS)	14
6.7 Design for fatigue limit states (FLS)	15
6.8 Design for accidental limit states (ALS)	15
6.9 Robustness	15
6.10 Corrosion control	16
6.11 Design for fabrication and inspection	16
6.12 Design considerations for structural integrity management	17
6.13 Design for decommissioning, removal and disposal	17
7 Actions	17
7.1 General	17
7.2 In-place actions	18
7.3 Action factors	20
7.4 Vortex-induced vibrations	21
7.5 Deformations	21
7.6 Wave and current actions	22
7.7 Wind actions	22
7.8 Seismic actions	22
7.9 Actions during fabrication and installation	24
7.10 Accidental situations	24
7.11 Other actions	34
8 Strength and resistance of structural components	36
8.1 Use of local building standards	36
8.2 Cylindrical tubular member design	36
8.3 Design of non-cylindrical sections	37
8.4 Connections	37
8.5 Castings	38
9 Structural systems	39

9.1	Topsides design	39
9.2	Topsides structure design models	39
9.3	Support structure interface	40
9.4	Flare towers, booms, vents and similar structures	40
9.5	Helicopter landing facilities (helidecks)	41
9.6	Crane support structure	44
9.7	Derrick design	47
9.8	Bridges	47
9.9	Bridge bearings	48
9.10	Anti-vibration mountings for modules and major equipment skids	48
9.11	System interface assumptions	48
9.12	Fire protection systems	49
9.13	Penetrations	49
9.14	Difficult-to-inspect areas	49
9.15	Drainage	49
9.16	Actions due to drilling operations	49
9.17	Strength reduction due to heat	49
9.18	Walkways, laydown areas and equipment maintenance	50
9.19	Muster areas and lifeboat stations	50
10	Materials	50
10.1	General	50
10.2	Carbon steel	51
10.3	Stainless steel	53
10.4	Aluminium alloys	54
10.5	Fibre-reinforced composites	55
10.6	Timber	55
11	Fabrication, quality control, quality assurance and documentation	55
11.1	Assembly	55
11.2	Welding	56
11.3	Fabrication inspection	56
11.4	Quality control, quality assurance and documentation	56
11.5	Corrosion protection	57
12	Corrosion control	57
12.1	General	57
12.2	Forms of corrosion, associated corrosion rates and corrosion damage	57
12.3	Design of corrosion control	57
12.4	Fabrication and installation of corrosion control	58
12.5	In-service inspection, monitoring and maintenance of corrosion control	59
13	Loadout, transportation and installation	59
14	In-service inspection and structural integrity management	60
14.1	General	60
14.2	Particular considerations applying to topsides structures	60
14.3	Topsides structure default inspection scopes	61
15	Assessment of existing topsides structures	62
16	Reuse of topsides structure	63
Annex A (informative) Additional information and guidance		64
Annex B (informative) Example calculation of building code correspondence factor		108
Annex C (informative) Regional information		114
Bibliography		115

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 19901-3 was prepared by Technical Committee ISO/TC 67, *Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries*, Subcommittee SC 7, *Offshore structures*.

This second edition cancels and replaces the first edition (ISO 19901-3:2010), which has been technically revised.

ISO 19901 consists of the following parts, under the general title *Petroleum and natural gas industries — Specific requirements for offshore structures*:

- *Part 1: Metocean design and operating considerations*
- *Part 2: Seismic design procedures and criteria*
- *Part 3: Topsides structure* [ISO 19901-3:2014](https://standards.iteh.ai/catalog/standards/iso/3312f47f-f66f-46f2-9086-1026ff7b169e/iso-19901-3-2014)
- *Part 4: Geotechnical and foundation design considerations*
- *Part 5: Weight control during engineering and construction*
- *Part 6: Marine operations*
- *Part 7: Stationkeeping systems for floating offshore structures and mobile offshore units*
- *Part 8: Marine soil investigations*

A future Part 9 dealing with structural integrity management is under preparation.

The first edition of ISO 19901-3:2010 included a number of serious typographical errors. A 'Corrected' version of the first edition was issued in December 2011. This 'Corrected' version first edition was subsequently issued by some national standards organisations. To ensure all national standards bodies issue a 'Corrected' version of the document, TC 67/SC 7 decided to produce a second edition of 19901-3 which incorporates the following changes from the original issue in 2010:

- in [4.1](#), the symbol S_d for design internal force or moment has been added;
- in [8.1](#), Formulae (7), (8) and (9) have been amended to include symbol S_d and the second paragraph has been reworded to reflect the changes in the equations;
- in [9.18](#), first paragraph, new values have been given for variable action for the grating and plating as well as for the contribution of personnel to the total variable action allowance;

- in [A.7.10.4.2.2](#), the text has been reworded and Formula (A.1) has been amended, in line with the modifications in [8.1](#);
- in [A.8.1](#), Formula (A.5) has been corrected by changing “max” to “min”;
- in [B.2](#), [Table B.1](#), the value of Young’s modulus has been amended so as to be in accordance with the default value recommended in ISO 19902;
- in [Tables B.3](#), [B.4](#), [B.5](#), [B.7](#), [B.8](#) and [B.9](#), some values have been updated to reflect the change in Young’s modulus;
- in [B.3.3](#), [Table B.4](#), the symbol for utilization has been corrected;
- in [B.4.5](#), [Table B.10](#), all values for compression and for compression and bending have been amended, as well as the value for the minimum ratio;
- in [B.4.5](#), first and second paragraphs, the building code correspondence factor has been amended and a sentence about its applicability has been added;
- in [Annex C](#), [Table C.1](#), the existing building code correspondence factor has been amended and a second correspondence factor, relating to CSA S16-09, has been added;
- in the Bibliography, Reference^[3] has been updated with a more recent edition; references in the text (see [A.5.2](#), [A.8.3.1](#), [A.8.3.2](#), [A.8.3.3](#) and [A.8.3.4](#)) have been updated accordingly.

In producing the second edition the following additional minor corrections have been applied to the 2011 ‘Corrected’ version of the first edition:

- in [9.5.3.4](#) the units of the area-imposed action corrected to kN/m²;
- in [9.6.2](#) the description of off-lead and side-lead in [Table 5](#) improved;
- in A.7.10.4.2.3 the reference to section A.7.10.2.4 changed to A.7.10.4.2.4;
- in [A.11.3](#) minor text correction;
- in [Annex B](#) [Table B.1](#), symbols for bending amplification reduction factor corrected to C_{m,y} and C_{m,z} [ISO 19901-3:2014](#)

ISO 19901 is one of a series of International Standards for offshore structures. The full series consists of the following International Standards:

- ISO 19900, *Petroleum and natural gas industries — General requirements for offshore structures*
- ISO 19901 (all parts), *Petroleum and natural gas industries — Specific requirements for offshore structures*
- ISO 19902, *Petroleum and natural gas industries — Fixed steel offshore structures*
- ISO 19903, *Petroleum and natural gas industries — Fixed concrete offshore structures*
- ISO 19904-1, *Petroleum and natural gas industries — Floating offshore structures — Part 1: Monohulls, semi-submersibles and spars*
- ISO 19905-1, *Petroleum and natural gas industries — Site-specific assessment of mobile offshore units — Part 1: Jack-ups*
- ISO/TR 19905-2, *Petroleum and natural gas industries — Site-specific assessment of mobile offshore units — Part 2: Jack-ups commentary and detailed sample calculation*
- ISO 19906, *Petroleum and natural gas industries — Arctic offshore structures*

Introduction

The series of International Standards applicable to types of offshore structure, ISO 19900 to ISO 19906, constitutes a common basis covering those aspects that address design requirements and assessments of all offshore structures used by the petroleum and natural gas industries worldwide. Through their application, the intention is to achieve reliability levels appropriate for manned and unmanned offshore structures, whatever the type of structure and the nature or combination of the materials used.

It is important to recognize that structural integrity is an overall concept comprising models for describing actions, structural analyses, design rules, safety elements, workmanship, quality control procedures and national requirements, all of which are mutually dependent. The modification of one aspect of design in isolation can disturb the balance of reliability inherent in the overall concept or structural system. The implications involved in modifications, therefore, need to be considered in relation to the overall reliability of all offshore structural systems.

The series of International Standards applicable to types of offshore structure is intended to provide wide latitude in the choice of structural configurations, materials and techniques, without hindering innovation. Sound engineering judgement is therefore necessary in the use of these International Standards.

This part of ISO 19901 has been prepared for those structural components of offshore platforms which are above the wave zone and are not part of the support structure or of the hull. Previous national and international standards for offshore structures have concentrated on design aspects of support structures, and the approach to the many specialized features of topsides has been variable and inconsistent, with good practice poorly recorded.

Historically, the design of structural components in topsides has been performed to national or regional codes for onshore structures, modified in accordance with experience within the offshore industry, or to relevant parts of classification society rules. While this part of ISO 19901 permits use of national or regional codes, and indeed remains dependent on them for the formulation of component resistance equations, it provides modifications that result in a more consistent level of component safety between support structures and topsides structures.

In some aspects, the requirements for topsides structures are the same as, or similar to, those for fixed steel structures; in such cases, reference is made to ISO 19902, with modifications where necessary. [Annex A](#) provides background to, and guidance on, the use of this part of ISO 19901, and is intended to be read in conjunction with the main body of this part of ISO 19901. The clause numbering in [Annex A](#) follows the same structure as that in the body of the normative text in order to facilitate cross-referencing.

[Annex B](#) provides an example of the use of national standards for onshore structures in conjunction with this part of ISO 19901.

Regional information on the application of this part of ISO 19901 to certain specific offshore areas is provided in [Annex C](#).

In International Standards, the following verbal forms are used:

- “shall” and “shall not” are used to indicate requirements strictly to be followed in order to conform to the document and from which no deviation is permitted;
- “should” and “should not” are used to indicate that, among several possibilities, one is recommended as particularly suitable, without mentioning or excluding others, or that a certain course of action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course of action is deprecated but not prohibited;
- “may” is used to indicate a course of action permissible within the limits of the document;
- “can” and “cannot” are used for statements of possibility and capability, whether material, physical or causal.

Petroleum and natural gas industries — Specific requirements for offshore structures —

Part 3: Topsides structure

1 Scope

This part of ISO 19901 gives requirements for the design, fabrication, installation, modification and structural integrity management for the topsides structure for an oil and gas platform. It complements ISO 19902, ISO 19903, ISO 19904-1, ISO 19905-1 and ISO 19906, which give requirements for various forms of support structure. Requirements in this part of ISO 19901 concerning modifications and maintenance relate only to those aspects that are of direct relevance to the structural integrity of the topsides structure.

The actions on (structural components of) the topsides structure are derived from this part of ISO 19901, where necessary in combination with other International Standards in the ISO 19901 series. The resistances of structural components of the topsides structure can be determined by the use of international or national building codes, as specified in this part of ISO 19901. If any part of the topsides structure forms part of the primary structure of the overall structural system of the whole platform, the requirements of this part of ISO 19901 are supplemented with applicable requirements in ISO 19902, ISO 19903, ISO 19904-1, ISO 19905-1 and ISO 19906.

This part of ISO 19901 is applicable to the topsides of offshore structures for the petroleum and natural gas industries, as follows:

- topsides of fixed offshore structures;
- discrete structural units placed on the hull structures of floating offshore structures and mobile offshore units;
- certain aspects of the topsides of arctic structures.

This part of ISO 19901 is not applicable to those parts of the superstructure of floating structures that form part of the overall structural system of the floating structure; these parts come under the provisions of ISO 19904-1. This part of ISO 19901 only applies to the structure of modules on a floating structure that do not contribute to the overall integrity of the floating structural system.

This part of ISO 19901 is not applicable to the structure of hulls of mobile offshore units.

This part of ISO 19901 does not apply to those parts of floating offshore structures and mobile offshore units that are governed by the rules of a recognized certifying authority and which are wholly within the class rules.

Some aspects of this part of ISO 19901 are also applicable to those parts of the hulls of floating offshore structures and mobile offshore units that contain hydrocarbon processing, piping or storage.

This part of ISO 19901 contains requirements for, and guidance and information on, the following aspects of topsides structures:

- design, fabrication, installation and modification;
- in-service inspection and structural integrity management;
- assessment of existing topsides structures;

- reuse;
- decommissioning, removal and disposal;
- prevention, control and assessment of fire, explosions and other accidental events.

This part of ISO 19901 applies to structural components including the following:

- primary and secondary structure in decks, module support frames and modules;
- flare structures;
- crane pedestal and other crane support arrangements;
- helicopter landing decks (helidecks);
- permanent bridges between separate offshore structures;
- masts, towers and booms on offshore structures.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 2631-1, *Mechanical vibration and shock — Evaluation of human exposure to whole-body vibration — Part 1: General requirements*

ISO 2631-2, *Mechanical vibration and shock — Evaluation of human exposure to whole-body vibration — Part 2: Vibration in buildings (1 Hz to 80 Hz)*

ISO 13702, *Petroleum and natural gas industries — Control and mitigation of fires and explosions on offshore production installations — Requirements and guidelines*

ISO 19900, *Petroleum and natural gas industries — General requirements for offshore structures*

ISO 19901-1, *Petroleum and natural gas industries — Specific requirements for offshore structures — Part 1: Metocean design and operating considerations*

ISO 19901-2, *Petroleum and natural gas industries — Specific requirements for offshore structures — Part 2: Seismic design procedures and criteria*

ISO 19901-6, *Petroleum and natural gas industries — Specific requirements for offshore structures — Part 6: Marine operations*

ISO 19902, *Petroleum and natural gas industries — Fixed steel offshore structures*

ISO 19903, *Petroleum and natural gas industries — Fixed concrete offshore structures*

ISO 19904-1, *Petroleum and natural gas industries — Floating offshore structures — Part 1: Monohulls, semi-submersibles and spars*

ISO 19905-1, *Petroleum and natural gas industries — Site-specific assessment of mobile offshore units — Part 1: Jack-ups*

ISO 19906, *Petroleum and natural gas industries — Arctic offshore structures*

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 19900, ISO 19902 and the following apply.

3.1**abnormal value**

design value of a parameter of abnormal severity used in accidental limit state checks in which a structure is intended not to suffer complete loss of integrity

Note 1 to entry: Abnormal events are typically accidental and environmental (including seismic) events having probabilities of exceedance of the order of 10^{-3} to 10^{-4} per annum.

[SOURCE: ISO 19900:2013, definition 3.1]

3.2**accidental situation**

design situation involving exceptional conditions of the structure or its exposure

EXAMPLE Impact, fire, explosion, loss of intended differential pressure.

[SOURCE: ISO 19900:2013, definition 3.2]

3.3**active fire protection**

system of fire protection that reacts to a fire by discharging water or an inert or reactive substance in the vicinity of the fire to extinguish it

Note 1 to entry: There is a possibility that such a system fails to operate as designed.

3.4**caisson**

appurtenance used for abstracting water from the sea or as a drain

3.5**conductor**

tubular pipe extending upward from or beneath the sea floor containing pipes that extend into the petroleum reservoir

[SOURCE: ISO 19900:2013, definition 3.12] [19901-3-2014](https://standards.iteh.ai/19901-3-2014)

Note 1 to entry: A conductor is generally vertical, and is continuous from below the sea floor to the wellbay in the topsides and can be laterally supported in both the support structure and topsides structure. The vertical support is in the seabed.

Note 2 to entry: In a few cases, conductors are rigidly attached to the topsides or to the support structure above sea level. In these cases, the conductor's axial stiffness can affect the load distribution within the overall structure.

3.6**critical component**

structural component, failure of which would cause failure of the whole structure, or a significant part of it

Note 1 to entry: A critical component is part of the primary structure.

[SOURCE: ISO 19902:2007, definition 3.12]

3.7**design accidental action**

accidental action with a probability of occurrence greater than 10^{-3} to 10^{-4} per year

3.8**design service life**

assumed period for which a structure is used for its intended purpose with anticipated maintenance, but without substantial repair being necessary

[SOURCE: ISO 19900:2013, definition 3.16]

3.9

design situation

set of physical conditions representing real conditions during a certain time interval, for which the design demonstrates that relevant limit states are not exceeded

[SOURCE: ISO 19900:2013, definition 3.17]

3.10

design value

value derived from the representative value for use in the design verification procedure

[SOURCE: ISO 19900:2013, definition 3.18]

3.11

explosion

rapid chemical reaction of gas or dust in air

Note 1 to entry: An explosion results in increased temperatures and pressure impulses. A gas explosion on an offshore platform is usually a deflagration in which flame speeds remain subsonic.

[SOURCE: ISO 19902:2007, definition 3.17]

3.12

exposure level

classification system used to define the requirements for a structure based on consideration of life safety and consequences of failure

Note 1 to entry: An exposure level 1 platform is the most critical and exposure level 3 the least. A normally manned platform which cannot be reliably evacuated before a design event will be an exposure level 1 platform.

[SOURCE: ISO 19900:2013, definition 3.20]

3.13

extreme value

value of a parameter used in ultimate limit state checks, in which a structure's global behaviour is intended to stay in the elastic range

Note 1 to entry: Extreme values and events have probabilities of exceedance of the order of 10^{-2} per annum.

[SOURCE: ISO 19902:2007, definition 3.19]

3.14

load case

compatible load arrangements, sets of deformations and imperfections considered simultaneously with permanent actions and fixed variable actions for a particular design or verification

[SOURCE: ISO 19902:2007, definition 3.29]

Note 1 to entry: Load arrangements are the identification of the position, magnitude and direction of a free action.

3.15

mitigation

action taken to reduce the consequences of a hazardous event

EXAMPLE Provision of fire or explosion walls; use of water deluge on gas detection; structural strengthening.

3.16

nominal value

value assigned to a basic variable determined on a non-statistical basis, typically from acquired experience or physical conditions

[SOURCE: ISO 19900:2013, definition 3.29]

3.17**owner**

representative of the company or companies owning or leasing a development

[SOURCE: ISO 19900:2013, definition 3.34]

3.18**passive fire protection****PFP**

coating on the surface of a structural component that improves the structural component's resistance to fire

Note 1 to entry: Some PFP can produce toxic fumes in fires.

3.19**platform**

complete assembly including structure, topsides, foundations and stationkeeping systems

[SOURCE: ISO 19900:2013, definition 3.35]

3.20**regulator**

authority established by a national governmental administration to oversee the activities of the offshore oil and natural gas industries within its jurisdiction, with respect to the overall safety to life and protection of the environment

Note 1 to entry: The term *regulator* can encompass more than one agency in any particular territorial waters.

Note 2 to entry: The regulator can appoint other agencies, such as marine classification societies, to act on its behalf, and in such cases, *regulator* as it is used in this International Standard includes such agencies.

Note 3 to entry: In this International Standard, the term *regulator* does not include any agency responsible for approvals to extract hydrocarbons, unless such agency also has responsibility for safety and environmental protection.

[ISO 19901-3:2014](http://www.iso.org/iso/iso_19901-3:2014)

[SOURCE: ISO 19902:2007, definition 3.40]

http://www.iso.org/iso/iso_19901-3:2014

3.21**representative value**

value assigned to a basic variable for verification of a limit state

[SOURCE: ISO 19900:2013, definition 3.38]

3.22**return period**

average period between occurrences of an event or of a particular value being exceeded

Note 1 to entry: The offshore industry commonly uses a return period measured in years for environmental events. The return period in years is equal to the reciprocal of the annual probability of exceedance of the event.

[SOURCE: ISO 19900:2013, definition 3.40]

3.23**riser**

tubular used for the transport of fluids between the sea floor and a termination point on the platform

Note 1 to entry: For a fixed structure the termination point is usually the topsides. For floating structures, the riser can terminate at other locations of the platform.

[SOURCE: ISO 19900:2013, definition 3.41]

Note 2 to entry: A riser can be supported both laterally and vertically in the topsides structure and transmit actions from thermal effects, wave action, permanent and variable actions and variations in fluid flow to the topsides structure.

3.24

robustness

ability of a structure to withstand accidental and abnormal events without being damaged to an extent disproportionate to the cause

[SOURCE: ISO 19900:2013, definition 3.42]

3.25

safety-critical element

SCE

item of structure, piping or equipment, the failure of which can result in major accidents or which is provided to prevent or mitigate against them

EXAMPLE Primary structure, pressure-containing equipment, blow-down and other safety systems, vessels and pipework containing hazardous materials, fire and gas detection systems, supports for SCE.

3.26

structural component

physically distinguishable part of a structure

EXAMPLE Column, beam, stiffened plate, tubular joint, or foundation pile.

[SOURCE: ISO 19900:2013, definition 3.46]

3.27

support structure

structure supporting the topsides

Note 1 to entry: The support structure can take many forms including fixed steel (see ISO 19902), fixed concrete (see ISO 19903), floating (see ISO 19904-1), mobile offshore units (see ISO 19905-1), or the various forms of arctic structures (see ISO 19906).

3.28

topsides

structures and equipment placed on a supporting structure (fixed or floating) to provide some or all of a platform's functions

Note 1 to entry: For a ship-shaped floating structure, the deck is not part of the topsides.

Note 2 to entry: For a jack-up, the hull is not part of the topsides.

Note 3 to entry: A separate fabricated deck or module support frame is part of the topsides.

[SOURCE: ISO 19900:2013, definition 3.52]

4 Symbols and abbreviated terms

4.1 Symbols

a acceleration

A accidental action

b spacing of stiffeners