
INTERNATIONAL STANDARD

Second edition 2014-06-15

Plastics — Differential scanning calorimetry (DSC) —

Part 4: Determination of specific heat capacity

iTeh STPlastiques Analyse calorimétrique différentielle (DSC) — Partie 4: Détermination de la capacité thermique massique

<u>ISO 11357-4:2014</u> https://standards.iteh.ai/catalog/standards/sist/9c87b0cd-13e0-4ec4-a09f-8f40f299bfa4/iso-11357-4-2014

Reference number ISO 11357-4:2014(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 11357-4:2014</u> https://standards.iteh.ai/catalog/standards/sist/9c87b0cd-13e0-4ec4-a09f-8f40f299bfa4/iso-11357-4-2014

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Page

Contents

Fore	word	iv
1	Scope	
2	Normative references	
3	Terms and definitions	
4	Principle4.1General4.2Continuous-scanning method4.3Stepwise-scanning method	2 3
5	Apparatus	4
6	Test specimen	
7	Test conditions and specimen conditioning	
8	 Procedure 8.1 Selection of crucibles 8.2 Setting up the apparatus and adjustment of isothermal baselines 8.3 Measurement of specific heat capacity of calibration material 8.4 Specimen run 	
9	Determination of specific heat capacities9.1Calculation of specific heat capacities9.2Numerical rounding of the resultsPrecision and bias	
10	Precision and bias (Stanuarus.iten.ar)	
11	Test report	
Ann	ex A (informative) An approximate expression of the specific heat capacity [3] to [5]	of pure α-alumina 9
Bibl	iography	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 61, *Plastics*, Subcommittee SC 5, *Physical and chemical properties*.

ISO 11357-4:2014

This second edition cancels and replaces the first edition (ISOb 11357-4:2005) 9 This minor revision contains the following changes: 840f299bfa4/iso-11357-4-2014

- a) all normative reference were changed into undated ones;
- b) the term "pan" was replaced by "crucible" within the whole text;
- c) the endothermic direction, a, was added in all figures and key.

ISO 11357 consists of the following parts, under the general title *Plastics* — *Differential scanning calorimetry* (*DSC*):

- Part 1: General principles
- Part 2: Determination of glass transition temperature and glass transition step height
- Part 3: Determination of temperature and enthalpy of melting and crystallization
- Part 4: Determination of specific heat capacity
- Part 5: Determination of characteristic reaction-curve temperatures and times, enthalpy of reaction and degree of conversion
- Part 6: Determination of oxidation induction time (isothermal OIT) and oxidation induction temperature (dynamic OIT)
- Part 7: Determination of crystallization kinetics

Plastics — Differential scanning calorimetry (DSC) —

Part 4: **Determination of specific heat capacity**

1 Scope

This part of ISO 11357 specifies methods for determining the specific heat capacity of plastics by differential scanning calorimetry.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for the application of this document. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 472, Plastics — Vocabulary

3 Terms and definitions

ISO 11357-4:2014

For the purposes of this document, the terms and definitions given in ISO 472 and ISO 11357-1 and the following apply.

3.1

calibration material

material of known specific heat capacity

Note 1 to entry: Usually, α -alumina (such as synthetic sapphire) of 99,9 % or higher purity is used as the calibration material.

3.2

specific heat capacity (at constant pressure)

*c*_p quantity of heat necessary to raise the temperature of unit mass of material by 1 K at constant pressure

Note 1 to entry: It is given by the following formula:

 $c_{\rm p} = m^{-1}C_{\rm p} = m^{-1}({\rm d}Q/{\rm d}T)_{\rm p}$

(1)

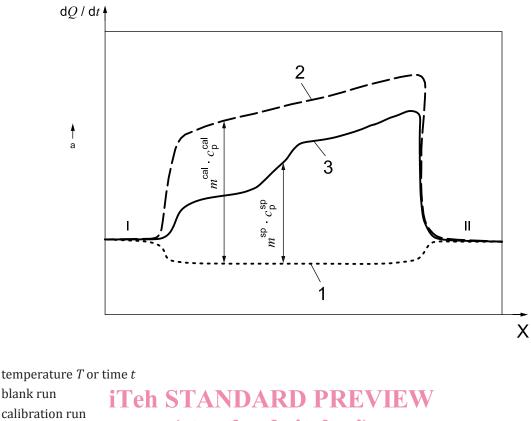
where

- *m* is the mass of material;
- *c*_p is the heat capacity and is expressed in kilojoules per kilogram per K (kJ·kg⁻¹·K⁻¹) or in joules per gram per K (J·g⁻¹·K⁻¹); subscript p indicates an isobaric process;
- dQ is the quantity of heat necessary to raise the temperature of the material by dT;

Note 2 to entry: This formula is valid in a temperature range where a material shows no first-order phase transition.

 $(dQ/dT) = (dt/dT) \times (dQ/dt) = (heating rate)^{-1} \times (heat flow rate)$ (2)

Note 3 to entry: At phase transitions, there is a discontinuity in the heat capacity. Part of the heat is consumed to produce a material state of higher energy and it is not all used in raising the temperature. For this reason, the specific heat can only be determined properly outside regions of phase transitions.


4 Principle

4.1 General

Each measurement consists of three runs at the same scanning rate (see Figure 1):

- a) a blank run (empty crucibles in sample and reference holders);
- b) a calibration run (calibration material in sample holder crucible and empty crucible in reference holder); (standards.iteh.ai)
- c) a specimen run (specimen in sample holder crucible and empty crucible in reference holder).

<u>ISO 11357-4:2014</u> https://standards.iteh.ai/catalog/standards/sist/9c87b0cd-13e0-4ec4-a09f-8f40f299bfa4/iso-11357-4-2014

2 3

Key Х

1

- (standards.iteh.ai) specimen run
- I isothermal baseline at start temperature T_s isothermal baseline at end temperature $\frac{370}{11357-4:2014}$ Π
- h.ai/catalog/standards/sist/9c87b0cd-13e0-4ec4-a09fа
 - Endothermic direction. 8f40f299bfa4/iso-11357-4-2014

Figure 1 — Schematic drawing of typical DSC curves for specific heat capacity measurement (blank, calibration and specimen runs) after baseline adjustment

4.2 Continuous-scanning method

Based on the DSC principle (see ISO 11357-1) and the definition of specific heat capacity given in 3.2, the following relations can be obtained:

$$m^{\rm sp} \cdot c_{\rm p}^{\rm sp} \propto P_{\rm specimen\,run} - P_{\rm blank\,run}$$
 (3)

$$m^{\text{cal}} \cdot c_{\text{p}}^{\text{cal}} \propto P_{\text{calibration run}} - P_{\text{blank run}}$$
(4)

where *P* is the heat flow rate (dQ/dt); superscripts sp and cal represent specimen and calibration material, respectively (see Figure 1).

When $P_{\text{specimen run}}$, $P_{\text{calibration run}}$ and $P_{\text{blank run}}$ are measured, c_{p}^{sp} can be calculated using Formula (6), since the values of c_p^{cal} , m^{sp} and m^{cal} are known:

$$\frac{m^{\rm sp} \cdot c_{\rm p}^{\rm sp}}{m^{\rm cal} \cdot c_{\rm p}^{\rm cal}} = \frac{P_{\rm specimen\,run} - P_{\rm blank\,run}}{P_{\rm calibration\,run} - P_{\rm blank\,run}}$$
(5)

$$c_{\rm p}^{\rm sp} = c_{\rm p}^{\rm cal} \cdot \frac{m^{\rm cal} \left(P_{\rm specimen\,run} - P_{\rm blank\,run} \right)}{m^{\rm sp} \left(P_{\rm calibration\,run} - P_{\rm blank\,run} \right)} \tag{6}$$

© ISO 2014 – All rights reserved

4.3 Stepwise-scanning method

In the stepwise-scanning method, the total temperature range to be scanned is divided into small intervals and a complete determination consisting of the three runs mentioned in <u>4.1</u> is performed for each temperature interval. Upon integration of the heat flow rate curve, the total heat ΔQ consumed in the interval can be obtained. Dividing ΔQ by the temperature interval ΔT and the mass of the specimen gives the specific heat [see Formula (1)]:

$$m^{\rm sp} \cdot c_{\rm p}^{\rm sp} \propto \left(\frac{\Delta Q}{\Delta T}^{\rm sp}\right)_{\rm p} - \left(\frac{\Delta Q}{\Delta T}^{\rm blank}\right)_{\rm p}$$

$$m^{\rm cal} \cdot c_{\rm p}^{\rm cal} \propto \left(\frac{\Delta Q}{\Delta T}^{\rm cal}\right)_{\rm p} - \left(\frac{\Delta Q}{\Delta T}^{\rm blank}\right)_{\rm p}$$

$$\tag{8}$$

Keeping the temperature intervals ΔT constant, combining Formulae (7) and (8) results in:

$$c_{\rm p}^{\rm sp} = c_{\rm p}^{\rm cal} \cdot \frac{m^{\rm cal}}{m^{\rm sp}} \cdot \frac{\Delta Q^{\rm sp} - \Delta Q^{\rm blank}}{\Delta Q^{\rm cal} - \Delta Q^{\rm blank}}$$
(9)

5 Apparatus

5.2

5.1 DSC apparatus. See ISO 11357-1.

iTeh STANDARD PREVIEW Crucibles. See ISO 11357-1. (standards.iteh.ai)

The crucibles for the test specimen and the reference specimen (calibration material) shall be of the same shape and material and their masses shall not differ by more than 0,1 mg.

NOTE The same blank run and calibration run can be used for several measurements, if the instrument is sufficiently stable and the difference in mass between the calibration material crucible and the empty crucible is corrected for. An adequate correction can be obtained by adding the term $c_{p, crucible}(T)\beta\Delta m$ to the heat flow rate of the calibration run, where $c_{p,crucible}(T)$ is the specific heat capacity of the calibration crucible as a function of temperature, β is the heating rate and Δm is the difference in mass between the calibration run system at the empty crucible. The same procedure can also be used for correcting differences in mass between the specimen run and the blank run.

5.3 Analytical balance. See ISO 11357-1.

6 Test specimen

See ISO 11357-1.

7 Test conditions and specimen conditioning

See ISO 11357-1.

8 Procedure

8.1 Selection of crucibles

Prepare three crucibles and their lids and weigh the crucibles together with their lids. The total mass shall not differ by more than 0,1 mg (see <u>5.2</u>). In other respects, such as material, size, crucible type (open or sealed), the crucibles shall be identical.

8.2 Setting up the apparatus and adjustment of isothermal baselines

- **8.2.1** Place a pair of empty crucibles with lids in the DSC sample and reference holders.
- **8.2.2** If using a continuous-scan programme:
- a) Set the start and end temperatures (T_s and T_f). The start temperature T_s should be at least 30 K lower than that at which data are first required.

NOTE 1 When more precise results are required over a wide temperature range, the overall range can be divided into two (or more) smaller ranges, each 50 K to 100 K wide. The start temperature T_s of the second range should be 30 K lower than the end temperature T_f of the first temperature range to ensure sufficient overlap.

- b) Set the scanning rate.
- c) Set the time interval between the isothermal stages I and II (see Figure 1) and allow the respective isothermal baselines to stabilize. This interval will usually be between 2 min and 10 min.
- NOTE 2 Some calorimeters, e.g. those of the Calvet type, may need up to 30 min before the baseline stabilizes.

8.2.3 If using a stepwise-scan programme:

When the specific heat capacities of the samples do not significantly depend on the temperature, the stepwise-scanning method can be used in which the integration of the heat flow over small temperature intervals gives a set of individual specific heat values for the temperature intervals considered. Attention shall be paid to the following points:

- a) The time interval between the isothermal stages shall be sufficiently long to obtain a stable baseline.
- b) This method shall not be used over a temperature range in which first-order phase transitions occur. 8f40f299bfa4/iso-11357-4-2014

The stepwise scan is performed as follows:

- Set the start and end temperatures (T_s and T_f).
- Set the temperature increment preferably to 5 K to 10 K.
- Set the temperature-scanning rate to 5 K·min⁻¹ or 10 K·min⁻¹.
- Set the time interval between the isothermal stages, usually to between 2 min and 10 min.

8.2.4 Set the sensitivity of the heat flow rate in order to obtain an ordinate span of at least 80 % of full scale (see Figure 1).

8.2.5 Adjust the apparatus so that the isothermal baselines before and after the heating stage are at the same ordinate level.

If microcomputer-based systems are used, the isothermal baselines can be adjusted to the same ordinate level after the data has been acquired. However, it is strongly recommended that baseline adjustment is done before any measurements are made in order to improve the accuracy of the results. If a conventional pen recorder is used, proper apparatus adjustment is crucial to minimize differences in isothermal baseline level.

Check that adjustment of the baselines of the respective DSC curves results in the same ordinate level. If the baseline reproducibility is poor, readjust the apparatus and repeat the determination.

NOTE Other reasons for poor baseline reproducibility can be contamination of the sample crucible, the position of the lid, the stability of the purge gas flow rate, sample decomposition, sample evaporation, chemical reaction between crucible and sample, etc.