INTERNATIONAL STANDARD

Second edition 2017-05

Gas cylinders — Gases and gas mixtures — Determination of tissue corrosiveness for the selection of cylinder valve outlets

Bouteilles à gaz — Gaz et mélanges de gaz — Détermination de la corrosivité sur les tissus pour le choix des raccords de sortie de **iTeh STrobinetSARD PREVIEW**

(standards.iteh.ai)

ISO 13338:2017 https://standards.iteh.ai/catalog/standards/sist/0b8cfd1b-33ec-4deb-94b6-8a4f76efec60/iso-13338-2017

Reference number ISO 13338:2017(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13338:2017 https://standards.iteh.ai/catalog/standards/sist/0b8cfd1b-33ec-4deb-94b6-8a4f76efec60/iso-13338-2017

© ISO 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Forev	wordiv					
Intro	oductionv					
1	Scope 1					
2	Normative references					
3	Terms, definitions and symbols13.1Terms and definitions13.2Symbols2					
4	Classification2					
5	Categories of corrosiveness for pure gases 2					
6	Corrosiveness of gas mixtures — Calculation method					
Bibli	ography					

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13338:2017 https://standards.iteh.ai/catalog/standards/sist/0b8cfd1b-33ec-4deb-94b6-8a4f76efec60/iso-13338-2017

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 58, *Gas cylinders*, Subcommittee SC 2, *Cylinder fittings*.

https://standards.iteh.ai/catalog/standards/sist/0b8cfd1b-33ec-4deb-94b6-

This second edition cancels and replaces the first edition (ISO 13338:1995), which has been technically revised with the following change:

— <u>Clauses 3</u>, <u>4</u> and <u>5</u> have been updated.

Introduction

ISO 5145 specifies the dimensions of different valve outlets for different compatible gas groups. These compatible gas groups are determined according to practical criteria defined in ISO 14456.

These criteria are based on certain physical, chemical, toxic and corrosive properties of the gases. In particular, the tissue corrosiveness is considered in this document.

The aim of this document is to assign a classification category for each gas that takes into account the corrosiveness for skin, eyes and the respiratory tract of the gas.

For gas mixtures containing corrosive components, a calculation method based on the additivity method of the GHS is proposed.

However, for gas mixtures containing corrosive gas components, some valve outlets standards require the use of the corrosive category regardless of the corrosive gas concentration.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13338:2017 https://standards.iteh.ai/catalog/standards/sist/0b8cfd1b-33ec-4deb-94b6-8a4f76efec60/iso-13338-2017

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 13338:2017 https://standards.iteh.ai/catalog/standards/sist/0b8cfd1b-33ec-4deb-94b6-8a4f76efec60/iso-13338-2017

Gas cylinders — Gases and gas mixtures — Determination of tissue corrosiveness for the selection of cylinder valve outlets

1 Scope

This document provides:

- for pure gases and some liquids, a complete list indicating their corrosiveness;
- for gas mixtures, a calculation method, in the absence of experimental data, relating to the corrosiveness of each of their components;

in order to determine the corrosiveness of gases and gas mixtures on tissue so that a suitable outlet connection can be assigned to each of them.

2 Normative references

There are no normative references in this document. **ITEN STANDARD PREVIEW**

3 Terms, definitions and symbols ards.iteh.ai)

3.1 Terms and definitions ISO 13338:2017

https://standards.iteh.ai/catalog/standards/sist/0b8cfd1b-33ec-4deb-94b6-For the purposes of this document, the following terms and/definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— IEC Electropedia: available at http://www.electropedia.org/

— ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1

tissue corrosiveness of gases or gas mixtures

ability of a gas to damage or destroy living tissues (eyes, skin and mucous membranes)

Note 1 to entry: It corresponds to GHS hazard category skin corrosion 1, 1A, 1B or 1C or GHS hazard category eye damage 1.

3.1.2

irritant gas

gas which may cause a temporary reaction to the skin, eyes and mucous membranes

Note 1 to entry: It corresponds to GHS hazard category skin irritation 2 or GHS hazard category eye irritation 2.

Note 2 to entry: An irritant gas is regarded for the purposes of ISO 14456 as non-corrosive.

ISO 13338:2017(E)

3.2 Symbols

- L limit
- V volume
- C indicates a corrosive component
- i indicates an irritant component
- nc indicates a non-corrosive, non-irritant component

4 Classification

In accordance with the above, gases and gas mixtures are classified into the following categories:

- C: corrosive;
- i: irritant;
- nc: non-corrosive, non-irritant.

For a complete definition for purposes of the gas cylinder connection, the subdivisions of the FTSC code given in the notes to of <u>Table 1</u> shall also be taken into account:

- 0: non-corrosive (nc or i);**iTeh STANDARD PREVIEW**
- 1: forms non-halogen acids (C); (standards.iteh.ai)
- 2: basic (C);

ISO 13338:2017

 - 3: forms halogen acidsh@;//standards.iteh.ai/catalog/standards/sist/0b8cfd1b-33ec-4deb-94b6-8a4f76efec60/iso-13338-2017

5 Categories of corrosiveness for pure gases

The corrosiveness category of each gas (C, i or nc) corresponding to the classification defined in <u>Clause 3</u> is shown in <u>Table 1</u>.

Gas/liquid name	Chemical formula	Synonym	C Code ^b	Corrosiveness category
Ammonia ^a	NH ₃	R717	2	С
Antimony pentafluoride ^a	SbF ₅		3	С
Arsine	AsH ₃		0	nc
Bis-trifluoromethylperoxide	$(CF_3)_2O_2$		0	nc
Boron trichloride	BCI ₃	Boron chloride	3	С
Boron trifluoride	BF ₃	Boron fluoride	3	С
Bromine pentafluoride ^a	BrF ₅		3	С
Bromine trifluoride ^a	BrF ₃		3	С
Bromoacetone ^a	CH ₃ COCH ₂ Br		3	С
1,3-Butadiene, stabilized	$CH_2 = CH-CH = CH_2$		0	nc
Carbon monoxide	СО		0	nc
Carbonyl sulfide	COS	Carbonoxylsulfide	1	С
Carbonyl fluoride	CF ₂ O		3	С
Chlorine	Cl ₂		3	С
Chlorine pentafluoride	CIF ₅		3	С
Chlorine trifluoride	CIF ₃		3	С
Chloromethane iTeh	STACH3CIARI	Methyl chløride R40	0	nc
Chlorotrifluoroethylene, stabilized	C ₂ CIF ₃	toh ai)	0	nc
Cyanogen	(CN) ₂		0	i
Cyanogen chloride	CICN 13338-20	17	3	С
Cyclopropane https://standar	ds.iteh.ai/caG3Hestandards/si	st/0b8cTringthyleneb-94b	5- 0	nc
Deuterium chloride	8a4f DCf ec60/iso-13.	338-2017	3	С
Deuterium fluoride	DF		3	С
Deuterium selenide	D ₂ Se		1	i
Deuterium sulfide	D ₂ S		1	i
Diborane	B ₂ H ₆		0	nc
Dibromodifluoromethanea	CBr ₂ F ₂	R12B2	0	nc

Table 1 — Corrosiveness categories of pure gases

NOTES

Description of each group:

Group 4: non-flammable, toxic and corrosive or corrosive by hydrolysis;

Group 7: basic, flammable and corrosive;

Group 8: flammable, toxic and corrosive (acid) or non-corrosive;

Group 9: spontaneously flammable;

Group 12: oxidizing, toxic and corrosive;

Group 13: flammable, subject to decomposition.

Key FTSC (ISO 14456)

0 = non-corrosive

1 = forms non-halogenated acids

2 = basic

3 = forms halogenated acids

^a Some products, being liquid at normal ambient conditions, are included in this grouping because valve outlets are necessary when these products are supplied together with a propellant in a pressure container.

b This category may be conservative.