TECHNICAL ISO/IECTS
SPECIFICATION 19571

First edition
2016-02-01

Programming Languages —
Technical Specification for C++
Extensions for Concurrency

Langages de programmation — Spécification technique pour C ++
Extensions pour la concurrence

Reference number

@ m ISO/IEC TS 19571:2016(E)
Y=
©ISO/IEC 2016

ISO/IEC TS 19571:2016(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

WwWw.iso.org

ii © ISO/IEC 2016 - All rights reserved

ISO/IEC TS 19571:2016(E)

Contents

Foreword v

1 General 1
11 Namespaces, headers, and modificationsto standardclasses 1
12 Futureplans(Informative) o e 2
13 Featuretesting recommendations (Informative) 3

2 Improvementstostd::future<T>and Related APIS. 3
21 GeEneral . . . 3
22 Header <experimental/fUtUre> SynopsiS o o o e 3
23 Classtemplatefuture. 6
24 Classtemplateshared future 6
25 Classtemplale promiSe o o e 8
26 Classtemplatepackaged task 8
27 Functiontemplatewhen all 8
28 Classtemplatewhen_any result e 9
29 Functiontemplatewhen any e 9
210 Functiontemplate make ready future 11
211 Functiontemplate make _exceptional_future 11

3 Latchesand Barriers 12
31 Generd il ale QI ARITNA T I DID IR o e e 12
32 Teminology L 12
33 Laches........... (afandaorea.toly a0 oo Lo 12
34 Header <experimental/latch>synopsis 13
35 Classlatch e e e e e 13
36 Bamiertypeso T e e e e e e 14
3.7 Header <experimental/barrier>synopsis =. . .. 14
38 Classbarrier 15
39 Classflex_barrier 15

4 AtomicSMart POINLErS o 17
41 General 17
4.2 Header <experimental/atomic> SynopsiS e e e 17
43 Classtemplateatomic shared ptr e 18
44 Classtemplateatomic_ Weak_ptr e e 18

© ISO/IEC 2016 — All rights reserved il

ISO/IEC TS 19571:2016(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of nationa standards bodies (1SO
member bodies). The work of preparing International Standards is normally carried out through 1SO technical
committees. Each member body interested in a subject for which atechnical committee has been established has the right
to be represented on that committee. International organizations, governmental and non-governmental, in liaison with
ISO, also take part in the work. 1SO collaborates closely with the International Electrotechnical Commission (IEC) on al
meatters of electrotechnical standardization.

The procedures used to devel op this document and those intended for its further maintenance are described in the | SO/
IEC Directives, Part 1. In particular the different approval criteria needed for the different types of 1SO documents should
be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2.
www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. 1SO
shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the
development of the document will be in the Introduction and/or on the SO list of patent declarations received.
WWW.is0.org/patents

Any trade name used in this document isinformation given for the convenience of users and does not constitute an
endorsement.

For an explanation on the meaning of | SO-specific terms and expressions related to confarmity assessment, as well as
information about 1SO's adherence to'the WTO!principlesin the TechnicalBarriers to-Trade (TBT) see the following
URL: Foreword - Supplementary information

The committee responsible for this document is | SO/IEC JTC1.

v © ISO/IEC 2016 — All rights reserved

TECHNICAL SPECIFICATION ISO/IEC TS 19571:2016(E)

Programming Languages — Technical Specification for C++
Extensions for Concurrency

1 General [general]

1.1 Namespaces, headers, and modificationsto standard classes [gener al.namespaces)

Since the extensions described in this technical specification are experimental and not part of the C++ standard library,
they should not be declared directly within namespace st d. Unless otherwise specified, all components described in this
technical specification either:

— modify an existing interface in the C++ Standard Library in-place,

— aredeclared in a namespace whose name appends : : experi nent al : : concur rency_v1 to a namespace defined
in the C++ Standard Library, such asst d, or

— aredeclared in a subnamespace of a namespace described in the previous bullet, whose name is not the same as
an existing subnamespace of hamespace st d.

Each header described in this technical specification shall import the contents of st d: : experi ment al : : concurrency_v1
into st d: : experi nental asif by

namespace std {
namespace experinental {
inline nanespace concurrency_vl {}
}
}

Unless otherwise specified, references to other entities described in this technical specification are assumed to be
qualified with st d: : experi mental : : concurrency_v1: :, and references to entities described in the standard are assumed
to be quaified with st d: : .

Extensions that are expected to eventually be added to an existing header <neow> are provided inside the
<experi nent al / meows> header, which shall include the standard contents of <neows asif by

#i ncl ude <meow>
New headers are also provided in the <experi ment al / > directory, but without such an #i ncl ude.
Table 1 — C++ library headers

<experinmental /future> <experinental /barrier>

<experinmental /|l atch> <experinental/atom c>

1.2 Future plans (I nfor mative) [general.plang|

This section describes tentative plans for future versions of this technical specification and plans for moving content into
future versions of the C++ Standard.

The C++ committee intends to rel ease a new version of this technical specification approximately every year, containing
the library extensions we hope to add to a near-future version of the C++ Standard. Future versions will define their
contentsinstd: : experinental :: concurrency_v2,std::experinental ::concurrency_v3, €tc., with the most recent
implemented version inlined into st d: : experi ment al .

When an extension defined in this or afuture version of this technical specification represents enough existing practice, it
will be moved into the next version of the C++ Standard by removing the experi nent al : : concur rency_vN segment of its
namespace and by removing the exper i ment al / prefix from its header's path.

© ISO/IEC 2016 — All rights reserved 1

ISO/IEC TS 19571:2016(E)

1.3 Feature-testing recommendations (I nfor mative) [general featuretest]

1 For the sake of improved portability between partial implementations of various C++ standards, WG21 (the I SO technical
committee for the C++ programming language) recommends that implementers and programmers follow the guidelinesin
this section concerning feature-test macros. [Note: WG21's SD-6 makes similar recommendations for the C++ Standard
itself. — end note |

2 Implementers who provide a new standard feature should define a macro with the recommended name, in the same
circumstances under which the feature is available (for example, taking into account relevant command-line options), to
indicate the presence of support for that feature. |mplementers should define that macro with the value specified in the
most recent version of this technical specification that they have implemented. The recommended macro name is
"__cpp_lib_experinmental _" followed by the string in the "Macro Name Suffix" column.

3 Programmers who wish to determine whether afeature is available in an implementation should base that determination
on the presence of the header (determined with __has_i ncl ude(<header/ name>)) and the state of the macro with the
recommended name. (The absence of atested feature may result in a program with decreased functionality, or the relevant
functionality may be provided in a different way. A program that strictly depends on support for afeature can just try to
use the feature unconditionally; presumably, on an implementation lacking necessary support, translation will fail.)

Table 2 — Significant features in this technical specification

Doc. Title Prlm.ary Macro Name Suffix | Value Header

No. Section
N4399 ;r:g)g)\ell?eg’lfglosad..futurKT> 2 future_continuations |201505|<experimental /future>
N4204 | C++ Latches and Barriers 3 lat'ch 201505 | <experi ment al / | at ch>
N4204 | C++ Latches and Barriers 3 barrier 201505 | <experi ment al / barri er>
N4260 | Atomic Smart Pointers 4 atom c_smart_poi‘nt ers | 201505 | <experi nent al / at omi ¢c>

2 © ISO/IEC 2016 — All rights reserved

ISO/IEC TS 19571:2016(E)

2 Improvementsto st d: : f ut ure<T> and Related APIs [futures]

2.1 General [futures.general]

1 The extensions proposed here are an evolution of the functionality of st d: : fut ure and st d: : shared_f ut ure. The
extensions enable wait-free composition of asynchronous operations. Class templates st d: : pr oni se and
std: : packaged_t ask are also updated to be compatible with the updated st d: : f ut ure.

2.2 Header <experimental/future> synopsis [header.future.synop]

#i ncl ude <future>

nanespace std {
nanespace experimental {
i nline namespace concurrency_vl {

tenpl ate <class R> class pronise;
tenpl ate <class R> class prom se<R&>;
tenpl ate <> cl ass prom se<voi d>;

tenpl ate <class R>
voi d swap(prom se<R>& x, praoni.sesR>&-y), noexecepts

tenpl ate <class R> class future;

tenpl ate <class R> class future<R&;

tenpl ate <> cl ass 'flut’'ure<void>;

tenpl ate <class R> class shared-future;
tenpl ate <class R> class shared_f ut ure<R&>;
tenpl ate <> cl ass shared_f uture<voi d>;

tenpl ate <cl ass> cl ass packaged_task; // undefined
tenplate <class R, class... ArgTypes>
cl ass packaged_t ask<R(ArgTypes...)>;

tenplate <class R class... ArgTypes>
voi d swap(packaged_t ask<R(ArgTypes...)>& packaged_task<R(ArgTypes...)>& noexcept;

tenpl ate <class T>
see bel ow nake_ready_future(T&& val ue);
future<voi d> nake_ready_future();

tenpl ate <class T>

future<T> make_exceptional _future(exception_ptr ex);
tenplate <class T, class B>

future<T> nmake_exceptional _future(E ex);

tenpl ate <class |nputlterator>

see bel ow when_all (I nputlterator first, Inputlterator |ast);
tenpl ate <class... Futures>

© ISO/IEC 2016 — All rights reserved 3

ISO/IEC TS 19571:2016(E)

see bel ow when_al | (Futures&&. .. futures);

tenpl ate <cl ass Sequence>
struct when_any_result;

tenpl ate <class |nputlterator>

see bel ow when_any(lnputlterator first, Inputlterator |ast);
tenpl ate <class... Futures>

see bel ow when_any(Futures&&. .. futures);

} /1 nanespace concurrency_vl
} 1/ nanespace experinental

tenpl ate <class R class Alloc>
struct uses_all ocat or<experinental :: promi se<R>, Alloc>;

tenpl ate <class R class Alloc>
struct uses_all ocat or<experinental : : packaged_t ask<R>, Alloc>;

} /1 nanespace std

2.3 Classtemplatefuture [futures.unique future]

1 The specifications of all declarations within this subclause 2.3 and its subclauses are the same as the corresponding
declarations, as specified in C++14 830.6.6, unless explicitly specified otherwise.

nanespace std {
nanespace experinental {
i nl'i ne nanespace concurrency vl {

tenpl ate <class R>

class future {

publi c:
future() noexcept;
future(future &) noexcept;
future(const future& = delete;
future(future<future<R>>&&) noexcept;
~future();
future& operator=(const future& = delete;
future& operator=(future&&) noexcept;
shared_f uture<R> share();

/] retrieving the val ue
see bel ow get();

/1 functions to check state
bool valid() const noexcept;
bool is_ready() const;

void wait() const;

tenpl ate <cl ass Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel _tine) const;

4 © ISO/IEC 2016 — All rights reserved

ISO/IEC TS 19571:2016(E)

tenpl ate <class O ock, class Duration>
future_status wait_until (const chrono::tine_point<C ock, Duration>& abs_tine) const;

/1 continuations
tenpl ate <class F>
see bel ow t hen(F&& func);

} /1 nanespace concurrency_vl
} /1 nanespace experinental
} /1 nanespace std

2 future(future<future<R>>&& rhs) noexcept;

3 Effects: Constructs af ut ur e object from the shared state referred to by r hs. Thef ut ur e becomes ready when one of
the following occurs:
— Boththerhs andrhs. get () areready. The value or the exception fromr hs. get () isstored in the
fut ur e's shared state.
— rhsisready but rhs. get () isinvalid. An exception of type st d: : fut ure_error, with an error condition
of std:: future_errc:: broken_pronise isstored in thef ut ur e's shared state.

4 Postconditions:

— wvalid() == true.
— rhs.valid() == false:

5 The member function template t hen provides amechanism for-attaching a€ontinuation to af ut ur e object, which will be
executed as specified below.

© ISO/IEC 2016 — All rights reserved 5

ISO/IEC TS 19571:2016(E)

6 tenplate <class F>
see bel ow t hen(F&& func);

7 Requires. | NVOKE(DECAY_COPY (std: : forward<F>(func)), std::move(*this)) shal beavalid expression.

8 Effects: The function creates a shared state that is associated with the returned f ut ur e object. Additionally,
— When the object's shared state is ready, the continuation
I NVOKE(DECAY_COPY(st d: : f orwar d<F>(func)), std::nove(*this)) iscalled onan unspecified thread
of execution with the call to DEcAY_coPy() being evaluated in the thread that called t hen.
— Any value returned from the continuation is stored as the result in the shared state of the resulting f ut ur e.
Any exception propagated from the execution of the continuation is stored as the exceptional result in the
shared state of the resulting f ut ure.

9 Returns. Whenresul t _of _t <decay_t <F>(f ut ur e<R>) > iSf ut ur e<R2>, for some type Rz, the function returns
f ut ur e<R2>. Otherwise, the function returns f ut ur e<r esul t _of _t <decay_t <F>(f ut ur e<R>) >>. [Note: Therule
above isreferred to asimplicit unwrapping. Without thisrule, the return type of t hen taking a callable returning a
f ut ur e<R> would have been f ut ur e<f ut ur e<R>>. Thisrule avoids such nested f ut ur e objects. The type of f 2 below
iSf ut ure<i nt > and not f ut ur e<f ut ur e<i nt >>:
[Example:
9();
fl.then([](future<int> f) {
future<int> f3 = h();
return f3;

).

future<int> f1
future<int> f2

— end example]
— end note]

10 Postconditions: val id() == fal se onthearigina f yture.valid() == true onthef uture returned fromt hen.
[Note: In case of implicit unwrapping, the vaidity of the f ut ur e returned from f unc, cannot be established until after
the completion of the continuation. If it is.not valid, the resulting.f ut ur.e becomes ready with an exception of type
std::future_error, with anerror condition of std: : future_errc: : broken_proni se. — end note |

11 bool is_ready() const;

12 Returns: true if the shared state is ready, otherwisef al se.
24 Classtemplateshared_future [futures.shared_future]

1 The specifications of all declarations within this subclause 2.4 and its subclauses are the same as the corresponding
declarations, as specified in C++14 830.6.7, unless explicitly specified otherwise.

nanespace std {
nanespace experinmental {
i nl i ne nanmespace concurrency_ vl {

tenpl ate <class R>

class shared future {

public:
shared_future() noexcept;
shared_future(const shared future& noexcept;
shared_future(future<R>&%) noexcept;
shared_future(future<shared future<R>>&& rhs) noexcept;
~shared_future();

6 © ISO/IEC 2016 — All rights reserved

ISO/IEC TS 19571:2016(E)

shared_future& operator=(const shared_ future&);
shared_future& operator=(shared_future&& noexcept;

/] retrieving the value
see bel ow get ();

/1 functions to check state
bool valid() const noexcept;
bool is_ready() const;

voi d wait() const;
templ ate <cl ass Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel _tine) const;
tenpl ate <class O ock, class Duration>
future_status wait_until (const chrono::time_point<C ock, Duration>& abs_tinme) cons

/1 continuations
tenmpl ate <class F>
see bel ow t hen(F&& func) const;

b

} /1 namespace concurrency_vl
} /1 namespace experinental
} /1 namespace std

2 shared_future(future<shared_future<R>>&&rhs) noexcept ;

3 Effects: Constructs ashar ed_f ut ur e object from the shared state referred to by r hs. The shar ed_f ut ur e becomes
ready when one of the following occurs:
— Both ther hs and rhsqgeti() are ready: The value orithe exceptionfrom-rhs1 get () isstored in the
shar ed_f ut ur e's shared state,
— rhsisready but rhs. get () isinvalid. The shar ed_f ut ur e stores an exception of type
std:: future_error, with an error condition of std: : future_errc: : broken_proni se.

4 Postconditions:

— wvalid() == true.
— rhs.valid() == fal se.

5 The member function template t hen provides a mechanism for attaching a continuation to ashar ed_f ut ur e object, which
will be executed as specified below.

© ISO/IEC 2016 — All rights reserved 7

	únŁŁ�÷Ø¦Y¿1‚…`Ä^”ª
9¨^�|‡�â–˝h ÷'º/•ð¨a<�.;S!iv;V�š�ÑÜæeù0�ÏÉ…eŠNRéÞØmpÄÃYAnµÿØ#º5\„kV:Â±ðvM

