

Designation: E 178-94 Designation: E178 - 08

An American National Standard

Standard Practice for Dealing With Outlying Observations¹

This standard is issued under the fixed designation E178; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This practice covers outlying observations in samples and how to test the statistical significance of them. An outlying observation, or "outlier," is one that appears to deviate markedly from other members of the sample in which it occurs. In this connection, the following two alternatives are of interest:
- 1.1.1 An outlying observation may be merely an extreme manifestation of the random variability inherent in the data. If this is true, the value should be retained and processed in the same manner as the other observations in the sample.
- 1.1.2 On the other hand, an outlying observation may be the result of gross deviation from prescribed experimental procedure or an error in calculating or recording the numerical value. In such cases, it may be desirable to institute an investigation to ascertain the reason for the aberrant value. The observation may even actually be rejected as a result of the investigation, though not necessarily so. At any rate, in subsequent data analysis the outlier or outliers will be recognized as probably being from a different population than that of the other sample values.
- 1.2 It is our purpose here to provide statistical rules that will lead the experimenter almost unerringly to look for causes of outliers when they really exist, and hence to decide whether alternative 1.1.1 above, is not the more plausible hypothesis to accept, as compared to alternative 1.1.2, in order that the most appropriate action in further data analysis may be taken. The procedures covered herein apply primarily to the simplest kind of experimental data, that is, replicate measurements of some property of a given material, or observations in a supposedly single random sample. Nevertheless, the tests suggested do cover a wide enough range of cases in practice to have broad utility.

(https://standards.iteh.ai) Document Preview

ASTM E178-08

https://standards.iteh.ai/catalog/standards/sist/53e27c1a-7b6d-45b2-96ab-f329d8e6adba/astm-e178-08

¹ This practice is under the jurisdiction of ASTM Committee E-11 on Statistical Methods and is the direct responsibility of Subcommittee E11 on Quality and Statistics and is the direct responsibility of Subcommittee E11.10 on Sampling and Data Analysis.

Current edition approved July 15, 1994. Published September 1994. Originally published as E 178–61 T. Last previous edition E 178–80(1989) c1. on Sampling / Statistics. Current edition approved Oct. 1, 2008. Published November 2008. Originally approved in 1961. Last previous edition approved in 2002 as E178 – 02. DOI: 10.1520/E0178-08.

2. GeneralReferenced Documents

2.1When-2.1 ASTM Standards:²

E456 Terminology Relating to Quality and Statistics

3. Terminology

- 3.1 Definitions: The terminology defined in Terminology E456 applies to this standard unless modified herein.
- 3.1.1 *outlier*—see **outlying observation**.
- 3.1.2 outlying observation, n—an observation that appears to deviate markedly in value from other members of the sample in which it appears.

4. Significance and Use

- 4.1 When the experimentar is clearly aware that a gross deviation from prescribed experimental procedure has taken place, the resultant observation should be discarded, whether or not it agrees with the rest of the data and without recourse to statistical tests for outliers. If a reliable correction procedure, for example, for temperature, is available, the observation may sometimes be corrected and retained.
- 2.2In4.2 In many cases evidence for deviation from prescribed procedure will consist primarily of the discordant value itself. In such cases it is advisable to adopt a cautious attitude. Use of one of the criteria discussed below will sometimes permit a clear-cut decision to be made. In doubtful cases the experimenter's judgment will have considerable influence. When the experimenter cannot identify abnormal conditions, he should at least report the discordant values and indicate to what extent they have been used in the analysis of the data.
- 2.3Thus,4.3 Thus, for purposes of orientation relative to the over-all problem of experimentation, our position on the matter of screening samples for outlying observations is precisely the following:
 - 2.3.14.3.1 Physical Reason Known or Discovered for Outlier(s):
 - 24.3.1.1 Reject observation(s).
 - 24.3.1.2 Correct observation(s) on physical grounds.
 - 24.3.1.3 Reject it (them) and possibly take additional observation(s).
 - 2.3.24.3.2 Physical Reason Unknown—Use Statistical Test:
 - 24.3.2.1 Reject observation(s).
 - 24.3.2.2 Correct observation(s) statistically.
 - 24.3.2.3 Reject it (them) and possibly take additional observation(s).
 - 24.3.2.4 Employ truncated-sample theory for censored observations.
- 2.4The4.4 The statistical test may always be used to support a judgment that a physical reason does actually exist for an outlier, or the statistical criterion may be used routinely as a basis to initiate action to find a physical cause.

3.5. Basis of Statistical Criteria for Outliers ards/sist/53e27c1a-7b6d-45b2-96ab-B29d8e6adba/astm-e178-08

3.1There 5.1 There are a number of criteria for testing outliers. In all of these, the doubtful observation is included in the calculation of the numerical value of a sample criterion (or statistic), which is then compared with a critical value based on the theory of random sampling to determine whether the doubtful observation is to be retained or rejected. The critical value is that value of the sample criterion which would be exceeded by chance with some specified (small) probability on the assumption that all the observations did indeed constitute a random sample from a common system of causes, a single parent population, distribution or universe. The specified small probability is called the "significance level" or "percentage point" and can be thought of as the risk of erroneously rejecting a good observation. It becomes clear, therefore, that if there exists a real shift or change in the value of an observation that arises from nonrandom causes (human error, loss of calibration of instrument, change of measuring instrument, or even change of time of measurements, etc.), then the observed value of the sample criterion used would exceed the "critical value" based on random-sampling theory. Tables of critical values are usually given for several different significance levels, for example, 5 %, 1 %. For statistical tests of outlying observations, it is generally recommended that a low significance level, such as 1 %, be used and that significance levels greater than 5 % should not be common practice.

Note 1—In this practice, we will usually illustrate the use of the 5 % significance level. Proper choice of level in probability depends on the particular problem and just what may be involved, along with the risk that one is willing to take in rejecting a good observation, that is, if the null-hypothesis stating "all observations in the sample come from the same normal population" may be assumed correct.

3.2It5.2 It should be pointed out that almost all criteria for outliers are based on an assumed underlying normal (Gaussian) population or distribution. When the data are not normally or approximately normally distributed, the probabilities associated with these tests will be different. Until such time as criteria not sensitive to the normality assumption are developed, the experimenter is cautioned against interpreting the probabilities too literally.

² The boldface numbers in parentheses refer to the list of references at the end of this practice.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

35.3 Although our primary interest here is that of detecting outlying observations, we remark that some of the statistical criteria presented may also be used to test the hypothesis of normality or that the random sample taken did come from a normal or Gaussian population. The end result is for all practical purposes the same, that is, we really wish to know whether we ought to proceed as if we have in hand a sample of homogeneous normal observations.

4.6. Recommended Criteria for Single Samples

4.1Let 6.1 Let the sample of *n* observations be denoted in order of increasing magnitude by $x_1 \le x_2 \le x_3 \le ... \le x_n$. Let x_n be the doubtful value, that is the largest value. The test criterion, T_n , recommended here for a single outlier is as follows:

$$T_n = (x_n - \overline{x})/s$$
 (1)

E0178-08_1

where:

 \bar{x} = arithmetic average of all *n* values, and

s = estimate of the population standard deviation based on the sample data, calculated as follows:

$$s = \frac{1}{i-1} \underbrace{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{(n-1)}}_{n-1 = i = 1 \text{ nxi } 2 - i = 1} = \underbrace{\frac{\sum_{i=1}^{n} x_i^2 - (\sum x_i)^{-n \cdot \bar{x}^2}}{n(n-1)}}_{n-1}$$

If x_1 rather than x_n is the doubtful value, the criterion is as follows:

E0178-08_3

The critical values for either case, for the 1 and 5 % levels of significance, are given in Table 1. Table 1 and the following tables give the "one-sided" significance levels. In the previous tentative recommended practice (1961), the tables listed values of significance levels double those in the present practice, since it was considered that the experimenter would test either the lowest or the highest observation (or both) for statistical significance. However, to be consistent with actual practice and in an attempt to avoid further misunderstanding, single-sided significance levels are tabulated here so that both viewpoints can be represented.

4.2The 6.2 The hypothesis that we are testing in every case is that all observations in the sample come from the same normal population. Let us adopt, for example, a significance level of 0.05. If we are interested *only* in outliers that occur on the *high side*, we should always use the statistic $T_n = (x_n - x - \bar{x})/s$ and take as critical value the 0.05 point of Table 1. On the other hand, if we are interested *only* in outliers occurring on the *low side*, we would always use the statistic $T_1 = (\bar{x} - x_1)/s$ and again take as a critical value the 0.05 point of Table 1. Suppose, however, that we are interested in outliers occurring on *either side*, but do not believe that outliers can occur on both sides simultaneously. We might, for example, believe that at some time during the experiment something possibly happened to cause an extraneous variation on the high side or on the low side, but that it was very unlikely that two or more such events could have occurred, one being an extraneous variation on the high side *and* the other an extraneous variation on the low side. With this point of view we should use the statistic $T_n = (x_n - \bar{x})/s$ or the statistic $T_1 = (\bar{x} - x_1)/s$ whichever is larger. If in this instance we use the 0.05 point of Table 1 as our critical value, the true significance level would be twice 0.05 or 0.10. If we wish a significance level of 0.05 and not 0.10, we must in this case use as a critical value the 0.025 point of Table 1. Similar considerations apply to the other tests given below.

4.2.1

<u>6.2.1</u> Example 1—As an illustration of the use of T_n and Table 1, consider the following ten observations on breaking strength (in pounds) of 0.104-in. hard-drawn copper wire: 568, 570, 570, 570, 572, 572, 572, 578, 584, 596. See Fig. 1. The doubtful observation is the high value, $x_{10} = 596$. Is the value of 596 significantly high? The mean is $\bar{x} = 575.2$ and the estimated standard deviation is s = 8.70. We compute

E0178-08_4

From Table 1, for n = 10, note that a T_{10} as large as 2.39 would occur by chance with probability less than 0.05. In fact, so large a value would occur by chance not much more often than 1 % of the time. Thus, the weight of the evidence is against the doubtful value having come from the same population as the others (assuming the population is normally distributed). Investigation of the doubtful value is therefore indicated. TABLE Critical Values for T (One-Sided Test) When Standard Deviation is Calculated from the Same Sample^A

TABLE 1 Critical Values for T (One-Sided Test) When Standard Deviation is Calculated from the Same Sample^A

IADL	L i Cillical values	ior / (One-Sided les	i) Wileli Stalldald L	Deviation is Calculate	ed Ironi the Same C	mainpie
Number of Observations,	Upper 0.1 % Significance Level	Upper 0.5 % Significance Level	Upper 1 % Significance Level	Upper 2.5 % Significance Level	Upper 5 % Significance Level	Upper 10 % Significance Level
3	1.155	1.155	1.155	1.155	1.153	1.148
4	1.499	1.496	1.492	1.481	1.463	1.425
5	1.780	1.764	1.749	1.715	1.672	1.602
6	2.011	1.973	1.944	1.887	1.822	1.729
7	2.201	2.139	2.097	2.020	1.938	1.828
8	2.358	2.274	2.221	2.126	2.032	1.909
9	2.492	2.387	2.323	2.215	2.110	1.977
10	2.606	2.482	2.410	2.290	2.176	2.036
11	2.705	2.564	2.485	2.355	2.234	2.088
12	2.791	2.636	2.550	2.412	2.285	2.134
13	2.867	2.699	2.607	2.462	2.331	2.175
14	2.935	2.755	2.659	2.507	2.371	2.213
15	2.997	2.806	2.705	2.549	2.409	2.247
16	3.052	2.852	2.747	2.585	2.443	2.279
17	3.103	2.894	2.785	2.620	2.475	2.309
18	3.149	2.932	2.821	2.651	2.504	2.335
19	3.191	2.968	2.854	2.681	2.532	2.361
20	3.230	3.001	2.884	2.709	2.557	2.385
21	3.266	3.031	2.912	2.733	2.580	2.408
22	3.300	3.060	2.939	2.758	2.603	2.429
23	3.332	3.087	2.963	2.781	2.624	2.448
24	3.362	3.112	2.987	2.802	2.644	2.467
25	3.389	3.135	3.009	2.822	2.663	2.486
26	3.415	3.157	3.029	2.841	2.681	2.502
27	3.440	3.178	3.049	2.859	2.698	2.519
28	3.464	3.199	3.068	2.876	2.714	2.534
29	3.486	3.218	3.085	2.893	2.730	2.549
30	3.507	3.236	3.103	2.908	2.745	2.563
31	3.528	3.253	3.119	2.924	2.759	2.577
32	3.546	3.270	3.135	2.938	2.773	2.591
33	3.565	3.286	3.150	2.952	2.786	2.604
34	3.582	3.301	3.164	2.965	2.799	2.616
35	3.599	3.316	AS 3.178	2.979	2.811	2.628
36 ps://sta	3.616 h.al/ca	3.330 lards/s	3.191 1 a-7b	6d-452.991 6ab-f	2.823 dba/as	2.639)8
37	3.631	3.343	3.204	3.003	2.835	2.650
38	3.646	3.356	3.216	3.014	2.846	2.661
39	3.660	3.369	3.228	3.025	2.857	2.671
40	3.673	3.381	3.240	3.036	2.866	2.682
41	3.687	3.393	3.251	3.046	2.877	2.692
42	3.700	3.404	3.261	3.057	2.887	2.700
43	3.712	3.415	3.271	3.067	2.896	2.710
44	3.724	3.425	3.282	3.075	2.905	2.719
45	3.736	3.435	3.292	3.085	2.914	2.727
46	3.747	3.445	3.302	3.094	2.923	2.736
47	3.757	3.455	3.310	3.103	2.931	2.744
48	3.768	3.464	3.319	3.111	2.940	2.753
49	3.779	3.474	3.329	3.120	2.948	2.760
50	3.789	3.483	3.336	3.128	2.956	2.768
51	3.798	3.491	3.345	3.136	2.964	2.775
52	3.808	3.500	3.353	3.143	2.971	2.783
53	3.816	3.507	3.361	3.151	2.978	2.790
54	3.825	3.516	3.368	3.158	2.986	2.798
55	3.834	3.524	3.376	3.166	2.992	2.804
56	3.842	3.531	3.383	3.172	3.000	2.811
57	3.851	3.539	3.391	3.180	3.006	2.818
58	3.858	3.546	3.397	3.186	3.013	2.824
59	3.867	3.553	3.405	3.193	3.019	2.831
60	3.874	3.560	3.411	3.199	3.025	2.837
61	3.882	3.566	3.418	3.205	3.032	2.842
62	3.889	3.573	3.424	3.212	3.037	2.849

TABLE 1 Continued

				IABLE 1 Continue	<u>•a</u>		
	Number of Observations,	Upper 0.1 % Significance Level	Upper 0.5 % Significance Level	Upper 1 % Significance Level	Upper 2.5 % Significance Level	Upper 5 % Significance Level	Upper 10 % Significance Level
_	63	3.896	3.579	3.430	3.218	3.044	2.854
	64	3.903	3.586	3.437	3.224	3.049	2.860
	65	3.910	3.592	3.442	3.230	3.055	2.866
	66	3.917	3.598	3.449	3.235	3.061	2.871
	67	3.923	3.605	3.454	3.241	3.066	2.877
	68	3.930	3.610	3.460	3.246	3.071	2.883
	69	3.936	3.617	3.466	3.252	3.076	2.888
	70	3.942	3.622	3.471	3.257	3.082	2.893
	71	3.948	3.627	3.476	3.262	3.087	2.897
	72	3.954	3.633	3.482	3.267	3.092	2.903
	73	3.960	3.638	3.487	3.272	3.098	2.908
	74	3.965	3.643	3.492	3.278	3.102	2.912
	75	3.971	3.648	3.496	3.282	3.107	2.917
	76	3.977	3.654	3.502	3.287	3.111	2.922
	77	3.982	3.658	3.507	3.291	3.117	2.927
	78	3.987	3.663	3.511	3.297	3.121	2.931
	79	3.992	3.669	3.516	3.301	3.125	2.935
	80	3.998	3.673	3.521	3.305	3.130	2.940
	81	4.002	3.677	3.525	3.309	3.134	2.945
	82	4.007	3.682	3.529	3.315	3.139	2.949
	83	4.012	3.687	3.534	3.319	3.143	2.953
	84	4.017	3.691	3.539	3.323	3.147	2.957
	85	4.021	3.695	3.543	3.327	3.151	2.961
	86	4.026	3.699	3.547	3.331	3.155	2.966
	87	4.031	3.704	3.551	3.335	3.160	2.970
	88	4.035	3.708	3.555	3.339	3.163	2.973
	89	4.039	3.712	3.559	3.343	3.167	2.977
	90	4.044	3.716	3.563	3.347	3.171	2.981
	91	4.049	3.720	3.567	3.350	3.174	2.984
	92	4.053	3.725	3.570	3.355	3.179	2.989
	93	4.057	3.728	3.575	3.358	3.182	2.993
	94	4.060	3.732	3.579	3.362	3.186	2.996
	95	4.064	3.736	3.582	3.365	3.189	3.000
	ht 96/97 //stand 98/99 100	4.069 4.073 4.076 4.080 4.084	3.739 3.744 3.747 3.750 3.754	2 3.586 3.589 3.593 3.597 3.600	1-45b 3.369 ab-132 3.372 3.377 3.380 3.383	3.193 3.196 3.201 3.204 3.207	3.003 3.006 3.011 3.014 3.017
	101	4.088	3.757	3.603	3.386	3.210	3.021
	102	4.092	3.760	3.607	3.390	3.214	3.024
	103	4.095	3.765	3.610	3.393	3.217	3.027
	104	4.098	3.768	3.614	3.397	3.220	3.030
	105	4.102	3.771	3.617	3.400	3.224	3.033
	106	4.105	3.774	3.620	3.403	3.227	3.037
	107	4.109	3.777	3.623	3.406	3.230	3.040
	108	4.112	3.780	3.626	3.409	3.233	3.043
	109	4.116	3.784	3.629	3.412	3.236	3.046
	110	4.119	3.787	3.632	3.415	3.239	3.049
	111	4.122	3.790	3.636	3.418	3.242	3.052
	112	4.125	3.793	3.639	3.422	3.245	3.055
	113	4.129	3.796	3.642	3.424	3.248	3.058
	114	4.132	3.799	3.645	3.427	3.251	3.061
	115	4.135	3.802	3.647	3.430	3.254	3.064
	116	4.138	3.805	3.650	3.433	3.257	3.067
	117	4.141	3.808	3.653	3.435	3.259	3.070
	118	4.144	3.811	3.656	3.438	3.262	3.073
	119	4.146	3.814	3.659	3.441	3.265	3.075
	120	4.150	3.817	3.662	3.444	3.267	3.078
_	121 122	4.153 4.156	3.819 3.822	3.665 3.667	3.447 3.450	$\frac{3.270}{3.274}$	3.081 3.083

IADLE I Conunuea	TABLE	1 (Continued
------------------	--------------	-----	-----------

Number of Observations,	Upper 0.1 % Significance	Upper 0.5 % Significance	Upper 1 % Significance	Upper 2.5 % Significance	Upper 5 % Significance	Upper 10 % Significance
<u>n</u>	Level	Level	Level	Level	Level	Level
123 124 125 126 127 128 129 130	<u>4.159</u> 4.161	3.824 3.827	3.670 3.672	3.452 3.455	3.276 3.279	3.086 3.089
125	4.164	3.831	3.675	3.457	3.281	3.092
126	4.166	3.833	3.677	3.460	3.284	3.095
127	4.169	3.836	3.680	3.462	3.286	3.097
128	4.173	3.838	3.683	3.465	3.289	3.100
120	4.175	3.840	3.686	3.467	3.291	3.102
120	4.178	3.843	3.688	3.470	3.294	3.104
130	4.176	3.043	3.000	3.470	3.294	3.104
131 132 133 134 135	4.180	3.845	3.690	3.473	3.296	3.107
<u>132</u>	<u>4.183</u>	3.848	3.693	3.475	3.298	<u>3.109</u>
<u>133</u>	4.185	3.850	3.695	3.478	3.302	<u>3.112</u>
<u>134</u>	4.188	3.853	3.697	3.480	3.304	<u>3.114</u>
<u>135</u>	4.190	3.856	3.700	3.482	3.306	<u>3.116</u>
<u>136</u> <u>137</u>	<u>4.193</u>	3.858	3.702	<u>3.484</u>	3.309	<u>3.119</u>
<u>137</u>	<u>4.196</u>	3.860	3.704	<u>3.487</u>	<u>3.311</u>	<u>3.122</u>
<u>138</u>	<u>4.198</u>	3.863	<u>3.707</u>	3.489	<u>3.313</u>	<u>3.124</u>
<u>139</u>	4.200	<u>3.865</u>	<u>3.710</u>	<u>3.491</u>	<u>3.315</u>	<u>3.126</u>
138 139 140	4.203	3.867	3.712	3.493	3.318	3.129
<u>141</u>	4.205	3.869	3.714	3.497	3.320	<u>3.131</u>
142 143 144	4.207	3.871	3.716	3.499	3.322	3.133
143	4.209	3.874	3.719	3.501	3.324	3.135
144	4.212	3.876	3.721	3.503	3.326	3.138
145	4.214	3.879	3.723	3.505	3.328	3.140
<u>146</u>	4.216	3.881	3.725	3.507	3.331	3.142
147	4.219	3.883	3.727	3.509	3.334	3.144
<i></i>				T T T T T T T T T T T T T T T T T T T		

 $\frac{T_n = (x_n - \bar{x})/s}{\sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}}} = \sqrt{\frac{\sum_{i=1}^n x_i^2 - n \cdot \bar{x}^2}{n-1}} = \sqrt{\frac{\sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2 / n}{T_1 = [(\bar{x} - x_1)/s]x_1 \le x_2 \le \dots}} \le x_n$

Avalues of T are taken from Ref (2). All values have been adjusted for division by n-1 instead of n in calculating s.

FIG. 1 Ten Observations of Breaking Strength from Example 1 in $\underline{6.2.1}$

Number of Obser- vations, n	Upper 0.1% Signifi- cance Level	Upper 0.5% Signifi- cance Level	Upper 1% Signifi- cance Level	Upper 2.5% Signifi- cance Level	Upper 5% Signifi- cance Level	Upper 10% Signif cance Level
3	1.155	1.155	1.155	1.155	1.153	1.148
4	1.499	1.496	1.492	1.481	1.463	1.425
5	1.780	1.764	1.749	1.715	1.672	1.602
6	2.011	1.973	1.944	1.887	1.822	1.729
7	2.201	2.139	2.097	2.020	1.938	1.828
8	2.358	2.274	2.221	2.126	2.032	1.909
9	2.492	2.387	2.323	2.215	2.110	1.977
10	2.606	2.482	2.410	2.290	2.176	2.036
11	2.705	2.564	2.485	2.355	2.234	2.088
12	2.791	2.636	2.550	2.412	2.285	2.134
13	2.867	2.699	2.607	2.462	2.331	2.175
14	2.935	2.755	2.659	2.507	2.371	2.213
15	2.997	2.806	2.705	2.549	2.409	2.247
16	3.052	2.852	2.747	2.585	2.443	2.279
17	3.103	2.894	2.785	2.620	2.475	2.309
18	3.149	2.932	2.821	2.651	2.504	2.335
19	3.191	2.968	2.854	2.681	2.532	2.361

TABLE 1 Continued

vations, <i>n</i>	Upper 0.1% Signifi- cance Level	Upper 0.5% Signifi- cance Level	Upper 1% Signifi- cance Level	Upper 2.5% Signifi- cance Level	Upper 5% Signifi- cance Level	Upper 10% Signature Cance Level
20	3.230	3.001	2.884	2.709	2.557	2.385
21	3.266	3.031	2.912	2.733	2.580	2.408
22	3.300	3.060	2.939	2.758	2.603	2.429
23	3.332	3.087	2.963	2.781	2.624	2.448
24	3.362	3.112	2.987	2.802	2.644	2.467
25	3.389	3.135	3.009	2.822	2.663	2.486
26	3.415	3.157	3.029	2.841	2.681	2.502
27	3.440	3.178	3.049	2.859	2.698	2.519
28	3.464	3.199	3.068	2.876	2.714	2.534
29	3.486	3.218	3.085	2.893	2.730	2.549
30	3.507	3.236	3.103	2.908	2.745	2.563
31	3.528	3.253	3.119	2.924	2.759	2.577
32	3.546	3.270	3.135	2.938	2.773	2.591
33	3.565	3.286	3.150	2.952	2.786	2.604
34	3.582				2.799	
		3.301	3.164	2.965		2.616
35	3.599	3.316	3.178	2.979	2.811	2.628
36	3.616	3.330	3.191	2.991	2.823	2.639
37	3.631	3.343	3.204	3.003	2.835	2.650
38	3.646	3.356	3.216	3.014	2.846	2.661
39	3.660	3.369	3.228	3.025	2.857	2.671
40	3.673	3.381	3.240	3.036	2.866	2.682
41	3.687	3.393	3.251	3.046	2.877	2.692
42	3.700	3.404	3.261	3.057	2.887	2.700
43	3.712	3.415	3.271	3.067	2.896	2.710
44	3.724	3.425	3.282	3.075	2.905	2.719
45	3.736	3.435	3.292	3.085	2.914	2.727
46	3.747	3.445	3.302	3.094	2.923	2.736
47	3.757	3.455	3.310	3.103	2.931	2.744
48	3.768	3.464	3.319	3.111	2.940	2.753
49	3.779	3.474	3.329	3.120	2.948	2.760
50	3.789	3.483	3.336	3.128	2.956	2.768
51	3.798	3.491	3.345	3.136	2.964	2.775
52	3.808	3.500	3.353	3.143	2.971	2.783
53		3.507	3.361	3.151	2.978	2.790
	3.816			1 / 5 3.158 0 6 1 621	0.000	2700
htt54c.//ctan	2 925	3.516 and seist	/53 3.368 1 a 7 b 6 c	1_4_0.1000hah_T	0049 2.986 dha/ash	2.798
htt 54 55		log/ 3.516 lards/sist	/53(3.368) 3.376	3.166	29d\ 2.992 dba/asti	m-e 1 2.790 2.804
55	dard 3.825 h.ai/cata 3.834	3.524	3.376	3.166	2.992	2.804
55 56	dard 3.825 n.ai/cata 3.834 s.842	3.524 3.531	3.376 3.383	3.166 3.172	3.000	2.804 2.811
56 57	3.825 3.834 3.842 3.851	3.524 3.531 3.539	3.376 3.383 3.391	3.166 3.172 3.180	2.992 3.000 3.006	2.804 2.811 2.818
55 7 5 6 57 58	3.825 3.834 3.842 3.851 3.858	3.524 3.531 3.539 3.546	3.376 3.383 3.391 3.397	3.166 3.172	2.992 3.000 3.006 3.013	2.804 2.811
56 57	3.825 3.834 3.842 3.851	3.524 3.531 3.539	3.376 3.383 3.391	3.166 3.172 3.180	2.992 3.000 3.006	2.804 2.811 2.818
55 7 5 6 57 58	3.825 3.834 3.842 3.851 3.858	3.524 3.531 3.539 3.546	3.376 3.383 3.391 3.397	3.166 3.172 3.180 3.186	2.992 3.000 3.006 3.013	2.804 2.811 2.818 2.824
55 56 57 58 59 60	3.842 3.851 3.858 3.867 3.874	3.524 3.531 3.539 3.546 3.553 3.560	3.376 3.383 3.391 3.397 3.405 3.411	3.166 3.172 3.180 3.186 3.193 3.199	2.992 3.000 3.006 3.013 3.019 3.025	2.814 2.818 2.824 2.831 2.837
55 56 57 58 59	3.825 3.834 3.842 3.851 3.858 3.867	3.524 3.531 3.539 3.546 3.553	3.376 3.383 3.391 3.397 3.405	3.166 3.172 3.180 3.186 3.193	2.992 3.000 3.006 3.013 3.019	2.804 2.811 2.818 2.824 2.831
55 56 57 58 59 60 61 62	3.825 3.834 3.842 3.851 3.858 3.867 3.874 3.882 3.889	3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037	2.844 2.818 2.824 2.831 2.837 2.842 2.849
55 56 57 58 59 60	3.842 3.851 3.858 3.867 3.874 3.882	3.524 3.531 3.539 3.546 3.553 3.560 3.566	3.376 3.383 3.391 3.397 3.405 3.411 3.418	3.166 3.172 3.180 3.186 3.193 3.199 3.205	2.992 3.000 3.006 3.013 3.019 3.025 3.032	2.814 2.818 2.824 2.831 2.837
55 56 57 58 59 60 61 62 63 64-65	3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910	3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.032 3.037 3.044 3.0493.055	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866
55 56 57 58 59 60 61 62 63 64 65	3.825 h.ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.890 3.896 3.9033.910	3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871
55 56 57 58 59 60 61 62 63 64-65 66 67	3.825 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923	3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449 3.454	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877
55 56 57 58 59 60 61 62 63 64-65 66 67 68	3.825 h. ai/cata 3.834 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923 3.930	3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605 3.610	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449 3.454 3.460	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241 3.246	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066 3.071	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877 2.883
55 56 57 58 59 60 61 62 63 64-65 66 67	3.825 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923	3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449 3.454 3.460 3.466	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877
55 56 57 58 59 60 61 62 63 64-65 66 67 68	3.825 h. ai/cata 3.834 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923 3.930	3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605 3.610	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449 3.454 3.460	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241 3.246	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066 3.071	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877 2.883
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	3.825 h.ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923 3.930 3.936 3.942	3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605 3.610 3.617 3.622	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449 3.454 3.460 3.466 3.471	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241 3.246 3.252 3.257	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066 3.071 3.076 3.082	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877 2.883 2.888 2.893
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	3.825 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923 3.930 3.936 3.942 3.948	3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605 3.610 3.617 3.622 3.627	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449 3.454 3.460 3.466 3.471 3.476	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241 3.246 3.252 3.257 3.262	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066 3.071 3.076 3.082 3.087	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877 2.883 2.888 2.893
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	3.825 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923 3.930 3.936 3.942 3.948 3.954	3.524 3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605 3.610 3.617 3.622 3.627 3.633	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449 3.454 3.460 3.466 3.471 3.476 3.482	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241 3.246 3.252 3.257 3.262 3.267	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066 3.071 3.076 3.082 3.087 3.092	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877 2.883 2.888 2.893 2.897 2.903
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	3.825 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923 3.930 3.936 3.942 3.948	3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605 3.610 3.617 3.622 3.627	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449 3.454 3.460 3.466 3.471 3.476	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241 3.246 3.252 3.257 3.262	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066 3.071 3.076 3.082 3.087	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877 2.883 2.888 2.893
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	3.825 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923 3.930 3.936 3.942 3.948 3.954	3.524 3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605 3.610 3.617 3.622 3.627 3.633	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449 3.454 3.460 3.466 3.471 3.476 3.482	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241 3.246 3.252 3.257 3.262 3.267	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066 3.071 3.076 3.082 3.087 3.092	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877 2.883 2.888 2.893 2.897 2.903
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73	3.825 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923 3.930 3.936 3.942 3.948 3.954 3.960	3.524 3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605 3.610 3.617 3.622 3.627 3.633 3.638	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449 3.454 3.460 3.466 3.471 3.476 3.482 3.487	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241 3.246 3.252 3.257 3.262 3.267 3.272	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066 3.071 3.076 3.082 3.087 3.092 3.098	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877 2.883 2.888 2.893 2.893 2.897 2.903 2.908
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	3.825 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.890 3.896 3.9033.910 3.917 3.923 3.930 3.936 3.942 3.948 3.960 3.965 3.971	3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605 3.610 3.617 3.622 3.627 3.633 3.638 3.638 3.643 3.648	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449 3.454 3.460 3.466 3.471 3.476 3.482 3.482 3.487 3.496	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241 3.246 3.252 3.257 3.262 3.267 3.272 3.278 3.282	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066 3.071 3.076 3.082 3.092 3.092 3.098 3.102 3.107	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877 2.883 2.888 2.893 2.903 2.903 2.908 2.912 2.917
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	3.825 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923 3.930 3.936 3.942 3.948 3.965 3.971	3.524 3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605 3.610 3.617 3.622 3.627 3.633 3.638 3.643 3.648 3.654	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449 3.454 3.466 3.471 3.476 3.482 3.482 3.496 3.496 3.496 3.496 3.496 3.496 3.502	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241 3.246 3.252 3.257 3.262 3.267 3.272 3.282 3.287	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066 3.071 3.076 3.082 3.087 3.092 3.098 3.102 3.107 3.111	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877 2.883 2.888 2.893 2.897 2.903 2.908 2.912 2.917
55 56 57 58 59 60 61 62 63 64-65 66 67 68 69 70 71 72 73 74 75	3.825 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923 3.930 3.936 3.942 3.948 3.954 3.960 3.965 3.971 3.977 3.982	3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605 3.610 3.617 3.622 3.627 3.633 3.638 3.638 3.643 3.648	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.454 3.460 3.466 3.471 3.476 3.482 3.482 3.492 3.496 3.502 3.507	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241 3.246 3.252 3.257 3.262 3.267 3.272 3.272 3.278 3.282 3.287 3.291	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066 3.071 3.076 3.082 3.092 3.092 3.098 3.102 3.107 3.111 3.117	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877 2.883 2.888 2.893 2.897 2.903 2.908 2.912 2.917 2.922 2.927
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76	3.825 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923 3.930 3.936 3.942 3.948 3.965 3.971	3.524 3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.579 3.5863.592 3.598 3.605 3.610 3.617 3.622 3.627 3.633 3.638 3.643 3.648 3.654	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.449 3.454 3.466 3.471 3.476 3.482 3.482 3.496 3.496 3.496 3.496 3.496 3.496 3.502	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241 3.246 3.252 3.257 3.262 3.267 3.272 3.282 3.287	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066 3.071 3.076 3.082 3.087 3.092 3.098 3.102 3.107 3.111	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877 2.883 2.888 2.893 2.897 2.903 2.908 2.912 2.917
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	3.825 h. ai/cata 3.842 3.851 3.858 3.867 3.874 3.882 3.889 3.896 3.9033.910 3.917 3.923 3.930 3.936 3.942 3.948 3.954 3.960 3.965 3.971 3.977 3.982	3.524 3.524 3.531 3.539 3.546 3.553 3.560 3.566 3.573 3.5863.592 3.598 3.605 3.610 3.617 3.622 3.627 3.633 3.638 3.648 3.648 3.654 3.658	3.376 3.383 3.391 3.397 3.405 3.411 3.418 3.424 3.430 3.4373.442 3.454 3.460 3.466 3.471 3.476 3.482 3.482 3.492 3.496 3.502 3.507	3.166 3.172 3.180 3.186 3.193 3.199 3.205 3.212 3.218 3.2243.230 3.235 3.241 3.246 3.252 3.257 3.262 3.267 3.272 3.272 3.278 3.282 3.287 3.291	2.992 3.000 3.006 3.013 3.019 3.025 3.032 3.037 3.044 3.0493.055 3.061 3.066 3.071 3.076 3.082 3.092 3.092 3.098 3.102 3.107 3.111 3.117	2.804 2.811 2.818 2.824 2.831 2.837 2.842 2.849 2.854 2.8602.866 2.871 2.877 2.883 2.888 2.893 2.897 2.903 2.908 2.912 2.917 2.922 2.927

TABLE 1 Continued

			TABLE I COMMING	eu		
Number of Observations, n	Upper 0.1% Signifi- cance Level	Upper 0.5% Signifi- cance Level	Upper 1% Signifi- cance Level	Upper 2.5% Signifi- cance Level	Upper 5% Signifi- cance Level	Upper 10% Signifi- cance Level
81	4.002	3.677	3.525	3.309	3.134	2.945
82	4.007	3.682	3.529	3.315	3.139	2.949
83	4.012	3.687	3.534	3.319	3.143	2.953
84	4.017	3.691	3.539	3.323	3.147	2.957
85	4.021	3.695	3.543	3.327	3.151	2.961
86	4.026	3.699	3.547	3.331	3.155	2.966
87	4.031	3.704	3.551	3.335	3.160	2.970
88	4.035	3.708	3.555	3.339	3.163	2.973
89	4.039	3.712	3.559	3.343	3.167	2.977
90	4.044	3.716	3.563	3.347	3.171	2.981
91	4.049	3.720	3.567	3.350	3.174	2.984
92	4.053	3.725	3.570	3.355	3.179	2.989
93	4.057	3.728	3.575	3.358	3.182	2.993
94	4.060	3.732	3.579	3.362	3.186	2.996
95	4.064	3.736	3.582	3.365	3.189	3.000
96	4.069	3.739	3.586	3.369	3.193	3.003
97	4.073	3.744	3.589	3.372	3.196	3.006
98	4.076	3.747	3.593	3.377	3.201	3.011
99	4.080	3.750	3.597	3.380	3.204	3.014
100	4.084	3.754	3.600	3.383	3.207	3.017
101	4.088	3.757	3.603	3.386	3.210	3.021
102	4.092	3.760	3.607	3.390	3.214	3.024
103	4.095	3.765	3.610	3.393	3.217	3.027
104	4.098	3.768	3.614	3.397	3.220	3.030
105	4.102	3.771	3.617	3.400	3.224	3.033
400	4.40=	_116	n Stant	larus		
106	4.105	3.774	3.620	3.403	3.227	3.037
107	4.109	3.777	3.623	3.406	3.230	3.040
108	4.112	3.780	3.626	3.409	3.233	3.043
109	4.116	3.784	3.629	3.412	3.236	3.046
110	4.119	3.787	3.632	3.415	3.239	3.049
111	4.122	3.790 CU	3.636	re V _{3.418} W	3.242	3.052
112	4.125	3.793	3.639	3.422	3.245	3.055
113	4.129	3.796	3.642	3.424	3.248	3.058
114	4.132	3.799	3.645	3.427	3.251	3.061
115	4.135	3.802	3.647	3.430	3.254	3.064
https://sta	andards iteh.ai/ca 4.138	italog/standards/s	sist/53e2/cla-/l	56d-45b/-96ab-3	B 29d Xehadba/a 3.257	stm-e1/X-08
117	4.141	3.808	3.653	3.435	3.259	3.070
118	4.144	3.811	3.656	3.438	3.262	3.073
119	4.146	3.814	3.659	3.441	3.265	3.075
120	4.150	3.817	3.662	3.444	3.267	3.078
121	4.153	3.819	3.665	3.447	3.270	3.081
122	4.156	3.822	3.667	3.450	3.274	3.083
123	4.159	3.824	3.670	3.452	3.276	3.086
124	4.161	3.827	3.672	3.455	3.279	3.089
125	4.164	3.831	3.675	3.457	3.281	3.092
126	4.166	3.833	3.677	3.460	3.284	3.095
127	4.169	3.836	3.680	3.462	3.28 6	3.097
128	4.173	3.838	3.683	3.465	3.289	3.100
129	4.175	3.840	3.686	3.467	3.291	3.102
130	4.178	3.843	3.688	3.470	3.294	3.104
131	4.180	3.845	3.690	3.473	3.296	3.107
132	4.183	3.848	3.693	3.475	3.298	3.109
133	4.185	3.850	3.695	3.478	3.302	3.112
134 135	4.188 4.190	3.853 3.856	3.697 3.700	3.480 3.482	3.304 3.306	3.114 3.116
100	4.130	3.030	3.700	9.40⊄	ა.ასს	3.110
136	4.193	3.858	3.702	3.484	3.309	3.119
137	4.196	3.860	3.704	3.487	3.311	3.122
138	4.198	3.863	3.707	3.489	3.313	3.124
139	4.200	3.865	3.710	3.491	3.315	3.126
140	4.203	3.867	3.712	3.493	3.318	3.129
141	4.205	3.869	3.714	3.497	3.320	3.131
142	4.207	3.871	3.716	3.499	3.322	3.133

TABLE 1 Continued

Number of Observations, n	Upper 0.1% Signifi- cance Level	Upper 0.5% Signifi- cance Level	Upper 1% Signifi- cance Level	Upper 2.5% Signifi- eance Level	Upper 5% Signifi- cance Level	Upper 10% Signifi- cance Level
143	4.209	3.874	3.719	3.501	3.324	3.135
144	4.212	3.876	3.721	3.503	3.326	3.138
145	4.214	3.879	3.723	3.505	3.328	3.140
146 147	4.216 4.219	3.881 3.883	3.725 3.727	3.507 3.509	3.331 3.334	3.142 3.144

 $T_n = (x_n - \bar{x})/s$

 $\begin{array}{l} s = |[\sum (x_i - \bar{x})^2]/(n-1)|^{1/2} \\ = |[n\sum x_i^2 - (\sum x_i)^2]/[n(n-1)]|^{1/2} \\ T_1 = [(\bar{x} - x_1)/s]x_1 \le x_2 \le \dots \le x_n \end{array}$

Avalues of T are taken from Ref (2). All values have been adjusted for division by n-1 instead of n in calculating s.

4.3An alternative system, the Dixon criteria, based entirely on ratios of differences between the observations is described in the literature

6.3 An alternative system, the Dixon criteria, based entirely on ratios of differences between the observations is described in the literature (1)³ and may be used in cases where it is desirable to avoid calculation of *s* or where quick judgment is called for. For the Dixon test, the sample criterion or statistic changes with sample size. Table 2 gives the appropriate statistic to calculate and also gives the critical values of the statistic for the 1, 5, and 10 % levels of significance.

4.3.1

<u>6.3.1</u> Example 2—As an illustration of the use of Dixon's test, consider again the observations on breaking strength given in Example 1, and suppose that a large number of such samples had to be screened quickly for outliers and it was judged too time-consuming to compute s. Table 2 indicates use of

E0178-08_5

Thus, for n = 10,

E0178-08_6

ileh Standards

For the measurements of breaking strength above,

TABLE 2 Dixon Criteria for Testing of Extreme Observation (Single Sample)^A

	<u>AS IVI L170-00</u>	Signific	ance Level (One-Sideo	d Test)
https://sta	ndards.iteh.ai/catalog/standards/sist/53e27e1a-7b6d-	430 10 percent 1329	d8e ₅ percent astm	1 percent
3	$r_{10} = (x_2 - x_1)/(x_n - x_1)$ if smallest value is suspected;	0.886	0.941	0.988
4	= $(x_n - x_{n-1})/(x_n - x_1)$ if largest value is suspected	0.679	0.765	0.889
5		0.557	0.642	0.780
6		0.482	0.560	0.698
7		0.434	0.507	0.637
8	$r_{11} = (x_2 - x_1)/(x_{n-1} - x_1)$ if smallest value is suspected;	0.479	0.554	0.683
9	= $(x_n - x_{n-1})/(x_n - x_2)$ if largest value is suspected.	0.441	0.512	0.635
10		0.409	0.477	0.597
11	$r_{21} = (x_3 - x_1)/(x_{n-1} - x_1)$ if smallest value is suspected;	0.517	0.576	0.679
12	= $(x_n - x_{n-2})/(x_n - x_2)$ if largest value is suspected.	0.490	0.546	0.642
13	· · · · · · · · · · · · · · · · · · ·	0.467	0.521	0.615
14	$r_{22} = (x_3 - x_1)/(x_{n-2} - x_1)$ if smallest value is suspected;	0.492	0.546	0.641
15	= $(x_n - x_{n-2})/(x_n - x_3)$ if largest value is suspected.	0.472	0.525	0.616
16		0.454	0.507	0.595
17		0.438	0.490	0.577
18		0.424	0.475	0.561
19		0.412	0.462	0.547
20		0.401	0.450	0.535
21		0.391	0.440	0.524
22		0.382	0.430	0.514
23		0.374	0.421	0.505
24		0.367	0.413	0.497
25		0.360	0.406	0.489
26		0.354	0.399	0.486
27		0.348	0.393	0.475
28		0.342	0.387	0.469
29		0.337	0.381	0.463
30		0.332	0.376	0.457

 $^{{}^{}A}x_1 \leq x_2 \leq ... \leq x_n$. (See Ref (1), Appendix.)

³ The boldface numbers in parentheses refer to the list of references at the end of this practice.

■ E0178-08_7

which is a little less than 0.477, the 5 % critical value for n = 10. Under the Dixon criterion, we should therefore *not* consider this observation as an outlier at the 5 % level of significance. These results illustrate how borderline cases may be accepted under one test but rejected under another. It should be remembered, however, that the T-statistic discussed above is the best one to use for the single-outlier case, and final statistical judgment should be based on it. See Ferguson (3,4).

46.3.2 Further examination of the sample observations on breaking strength of hand-drawn copper wire indicates that none of the other values need testing.

Note 2—With experience we may usually just look at the sample values to observe if an outlier is present. However, strictly speaking the statistical test should be applied to all samples to guarantee the significance levels used. Concerning "multiple" tests on a single sample, we comment on this below.

4.4A $\underline{6.4}$ A test equivalent to T_n (or T_1) based on the sample sum of squared deviations from the mean for all the observations and the sum of squared deviations omitting the "outlier" is given by Grubbs (5).

4.5The6.5 The next type of problem to consider is the case where we have the possibility of two outlying observations, the least and the greatest observation in a sample. (The problem of testing the two highest or the two lowest observations is considered below.) In testing the least and the greatest observations simultaneously as probable outliers in a sample, we use the ratio of sample range to sample standard deviation test of David, Hartley, and Pearson (6). The significance levels for this sample criterion are given in Table 3. Alternatively, the largest residuals test of Tietjen and Moore (7) could be used. An example in astronomy follows.

<u>6.5.1</u> Example 3—There is one rather famous set of observations that a number of writers on the subject of outlying observations have referred to in applying their various tests for "outliers." This classic set consists of a sample of 15 observations of the vertical semidiameters of Venus made by Lieutenant Herndon in 1846 (8). In the reduction of the observations, Prof. Pierce assumed two unknown quantities and found the following residuals which have been arranged in ascending order of magnitude:

-1.40 in.	-0.24	-0.05	0.18	0.48
-0.44	-0.22	0.06	0.20	0.63
_0.30	_0.13	0.10	0.39	1.01

TABLE 3 Critical Values (One-Sided Test) for w/s (Ratio of Range to Sample Standard Deviation)^A

	to Gampio Gtaria	ara Bornation,		
Number of Observations, <i>n</i>	5 Percent Significance Level	1 Percent Significance Level	0.5 Percent Significance Level	
3 0	2.00	2.00	2.00	
4	2.43	2.44	2.45	
5	2.75	2.80	2.81	
6	3.01	3.10	3.12	
7	3.22	3.34	3.37	
8	3.40	3.54	3.58	
https://standards.iteh.ai/catalog/9andar	rds/si3.553e27	a-3.72 d-45b	o2-9 3.77 -f329d8e6adba/astm-e178-	
10	3.68	3.88	3.94	
11	3.80	4.01	4.08	
12	3.91	4.13	4.21	
13	4.00	4.24	4.32	
14	4.09	4.34	4.43	
15	4.17	4.43	4.53	
16	4.24	4.51	4.62	
17	4.31	4.59	4.69	
18	4.38	4.66	4.77	
19	4.43	4.73	4.84	
20	4.49	4.79	4.91	
30	4.89	5.25	5.39	
40	5.15	5.54	5.69	
50	5.35	5.77	5.91	
60	5.50	5.93	6.09	
80	5.73	6.18	6.35	
100	5.90	6.36	6.54	
150	6.18	6.64	6.84	
200	6.38	6.85	7.03	
500	6.94	7.42	7.60	
1000	7.33	7.80	7.99	

ASee Ref (6), where:

$$w = x_n = x_1 E0178-9408_567$$

$$x_1 \le x_2 \le ... \le x_n E0178 - 9408 578$$

$$\sqrt{\frac{\sum_{i=1}^{n} (x_{1i} - \bar{x}\bar{x})^{2}}{n-1}} = \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2} - n \cdot \bar{x}^{2}}{n-1}} = \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2} / n}{n-1}}$$