INTERNATIONAL STANDARD

1861

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ ORGANISATION INTERNATIONALE DE NORMALISATION

Information processing — 7-track, 12,7 mm (0.5 in) wide magnetic tape for information interchange recorded at 8 rpmm (200 rpi)

Traitement de l'information — Bande magnétique à 7 pistes, de 12,7 mm (0,5 in) de large, enregistrée à 8 rangées par millimètre (200 rpi) pour l'échange d'information

First edition - 1975-02-01

(standards.iteh.ai)

ISO 1861:1975 https://standards.iteh.ai/catalog/standards/sist/35f6a580-def5-4e20-9d43-75a3c5341db2/iso-1861-1975

UDC 681.327.64 Ref. No. ISO 1861-1975 (E)

Descriptors: data processing, magnetic tapes, information interchange, specifications.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 1861 was drawn up by Technical Committee EW ISO/TC 97, Computers and information processing, and circulated to the Member Bodies in October 1973.

It has been approved by the Member Bodies of the following countries/5

https://standards.iteh.ai/catalog/standards/sist/35f6a580-def5-4e20-9d43-

Belgium Italy 75a3c534Sweden-1861-1975
Brazil Mexico Switzerland
Czechoslovakia New Zealand Thailand

Egypt, Arab Rep. of Poland Turkey
France Portugal United Kingd

France Portugal United Kingdom Germany Romania U.S.S.R.

Hungary South Africa, Rep. of Yugoslavia
Ireland Spain

This International Standard cancels and replaces ISO Recommendation

R 1861-1971, of which it constitutes a technical revision.

International Organization for Standardization, 1975

Printed in Switzerland

Information processing — 7-track, 12,7 mm (0.5 in) wide magnetic tape for information interchange recorded at 8 rpmm (200 rpi)

75a3c5341db2/iso-18

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies a 7-track, 8 rows per millimetre (rpmm) [200 rows per inch (rpi)] 12,7 mm (0.5 in) wide magnetic tape for interchangeability of tape between information processing systems which utilize 6and 7-bit coded character sets, the latter being as specified in ISO 646. It refers solely to magnetic tape for digital recording, on which the direction of magnetization is nominally longitudinal as opposed to nominally transverse.

NOTES

- 1 Certain other aspects of coding requirements, such as significance of binary digits, sequence of characters, filling of unused positions and magnetic labelling for use on magnetic tape, are the subject of ISO/R 961 and ISO/R 1001.
- 2 Details of unrecorded tape and reels are specified in the S. 13.5 reference field: For any specified packing density, the complementary publication, ISO 1864.

- 3.2 reference tape: A tape which has been selected for given properties for use in calibration.
- 3.3 secondary reference tape: A tape intended for routine calibrating purposes, whose performance is known and stated in relation to that of a reference tape.
- 3.4 signal amplitude reference tape: A reference tape selected as a standard for signal amplitude.

NOTE - A master standard (computer amplitude reference) has been established at the U.S. National Bureau of Standards (NBS) based on reference tapes and heads. Secondary signal amplitude reference tapes are available from NBS under the part number SRM 3200.

minimum field applied to the signal amplitude reference tape which causes an output signal equal to 95 % of the maximum output 20-9d43https://standards.iteh.ai/catalog/standards/s

2 REFERENCES

ISO/R 961, Implementation of the 6- and 7-bit coded character sets on 7-track, 12,7 mm (1/2 in) magnetic tape.

ISO/R 1001, Magnetic tape labelling and file structure for information interchange.

ISO 1864, Information processing - Unrecorded 12,7 mm (0.5 in) magnetic tape for information interchange - 8 and 32 rpmm (200 and 800 rpi), NRZI, and 63 rpmm (1 600 rpi), phase-encoded. 1)

3 DEFINITIONS

NOTE - The material contained in clauses 3 and 4 of this International Standard is duplicated from ISO 1864 for unrecorded magnetic tape. The latter document shall be considered to be correct, that is, the primary document, so far as any differences between the comparable clauses of the two documents are concerned.

For the purpose of this International Standard, the following definitions apply:

3.1 magnetic tape: Tape which will accept and retain magnetic signals intended for input, output and storage purposes on computers and associated equipment.

- 3.6 standard reference amplitude: peak-to-peak signal amplitude derived from the signal amplitude reference tape (SRM 3200) on the NBS measurement system, or equivalent, at the recording current equal to 2,1 X the current needed to produce the reference field.
- 3.7 reference edge: The edge further from an observer, or nearer the top of the page, when a tape is lying flat with the magnetic surface uppermost and the direction of movement for recording from left to right. (See figures 1 and 2.)
- 3.8 in contact: An operating condition in which the magnetic surface of a tape is in contact with a magnetic head.
- 3.9 track: A longitudinal area on the tape along which a series of magnetic signals may be recorded.
- 3.10 packing density: The number of bits of recorded information per unit length of track.
- 3.11 inter-block gap: A DC-erased section of tape separating blocks of information.

¹⁾ At present at the stage of draft. (Revision of ISO/R 1864.)

4 REFLECTIVE MARKERS (See note introducing clause 3, and figure 3)

Each reel of tape shall be furnished with two photo-reflective markers, each consisting of, or equivalent to, a transparent plastic base with a metallic (for example vaporized aluminium) coating sandwiched between the base and a thin layer of low cold flow thermal setting adhesive.

Reflective markers shall be placed on the side of the tape which does not carry the magnetic surface, and they shall be on opposite edges of the tape with the beginning-of-tape reflective marker (BOT) on the reference edge.

The width of the markers shall be 4.8 ± 0.5 mm $(0.19 \pm 0.02 \text{ in})$.

The length of the markers shall be 28 ± 5 mm $(1.1 \pm 0.2 \text{ in})$.

The thickness of the markers, measured after their application to the tape, shall be not greater than 0,020 mm (0.000 8 in).

The beginning-of-tape reflective marker (BOT) shall be placed 4,9 \pm 0,6 m (16 \pm 2 ft) from the beginning of the tape and the end-of-tape marker (EOT) shall be placed 7,6 $^+$ $^{1,5}_{0}$ m (25 $^+$ $^{5}_{0}$ ft) from the end of the tape.

The distance from the outer edge of a marker to the 1861:1975 adjacent edge of the tape shall/sbed0;8 mm a(0:03cig) tandards/sist/35f6a580-def5-4e20-9d43-maximum and the marker shall not protrude beyond the db2/iso-1861-1975 edge of the tape.

The markers shall be free of wrinkles and excessive adhesive. The surface of the reflective markers shall be non-conductive.

 ${\sf NOTE-It}$ is desirable to employ the thinnest markers which perform satisfactorily to minimize the distortion of layers of tape adjacent to them.

5 DIRECTION OF TAPE WIND (See figure 4)

On a reel of tape used for data interchange, the tape shall be wound with the magnetic surface innermost and the reference edge towards the front, i.e. away from the write-enable ring groove.

NOTE — This means that the tape will be wound in a clockwise direction from the end (nearest the hub) to the start (outer end) if the reel is viewed from the front.

6 WIND TENSION

For interchange purposes, a tape shall be wound at a tension not less than 1,5 N and not greater than 3 N (5 to 10 ozf approximately).

7 REFERENCE EDGE

The reference edge shall be used for guiding the tape.

8 TRACK IDENTIFICATION

There shall be 7 tracks on the tape and they shall be numbered consecutively from 1 to 7, with track 1 adjacent to the reference edge. (See figures 1 and 2.)

9 TRACK CONFIGURATION

The written track width shall be 1,20 + 0.02 mm (0.048 - 0.001 in).

The distance from the centre line of any track to the reference edge shall be $1.01 + (n - 1)1.78 \pm 0.11$ mm $[0.040 + (n - 1)0.070 \pm 0.004$ in] where n is the track number. (See figures 1 and 2.)

NOTE — It will be seen that the plus tolerance given above for the written track differs between the inch and the metric dimensions. The reason for this is that the metric dimension is not an exact conversion from the inch and if a 0 tolerance were given for the metric size it would result in an undesirably close tolerance in the metric series.

10 DENSITY OF RECORDING

The nominal density shall be 8 rpmm (200 rpi), i.e. 8 bits per millimetre of track.

11 SPACING OF ROWS

For the purpose of defining the location of recorded data on the tape, the position of a flux transition representing a binary "one" is defined as the point of maximum free-space surface flux density normal to the tape surface.

Rows of data shall be separated by a nominal distance of 0,127 mm (0.005 in). For such rows the longitudinal spacing between any "one" in a given row and any "one" in an adjacent row shall be not less than 0,089 mm (0.003 5 in) and not greater than 0,165 mm (0.006 5 in). The tolerance band containing any row of "ones" (data or check row) shall be 0,025 mm (0.001 in).

To define the length of tape occupied by a flux transition, the length of tape over which the component of free-space surface flux density normal to the surface of the tape exceeds 20 % of its maximum value shall be not greater than 0,076 mm (0.003 in).

12 BLOCK LENGTH

All blocks for data interchange shall consist of not less than 18 data rows and not more than 2 048 data rows and, in addition, a longitudinal check row. (See clause 22.)

13 PARITY OF DATA ROWS

The parity track shall be track 7 and all data rows shall have overall odd parity. (See clause 1.)

14 LONGITUDINAL CHECK ROW

This row, written at the end of a block, shall make the longitudinal parity of each track even for that block.

15 LONGITUDINAL CHECK ROW GAP

There shall be a gap of 0.50 ± 0.08 mm $(0.020 \pm 0.003 \text{ in})$ between the last row of recorded data and the longitudinal check row.

16 INTER-BLOCK GAP

The length of the inter-block gap shall be TANDA

19,0 + 6,0 mm (0.75 + 0.250 is)tandar

magnetic signals on the tape between the leading end of this marker and the first row. The recording area on the tape shall not extend more than 3 m (10 ft) beyond the leading edge of the end-of-tape marker (EOT). (See figure 3.)

19 METHOD OF RECORDING

The "non-return to zero mark" (NRZI) method of recording shall be used where a "one" is represented by a change of direction of longitudinal magnetization. The recording field shall be not less than 147 % of the reference field.

20 QUALITY OF RECORDING FOR DATA INTER-CHANGE

Information written must be valid at 35 % of the standard reference amplitude at the time of the first read-after-write. Tape shall not be employed for data interchange where the erase operations exceed two in number or 0,5 % of the total number of blocks written, whichever is the larger.

No permanent parity errors while writing are permissible in the data to be interchanged.

One erase operation is defined as erasing of a length of tape not greater than the length of the original block plus 55 mm (2.2 in).

17 ERASE

https://standards.iteh.ai/catalog/standards/siAll_64abinary
The minimum erase length shall be 51 mm {2.0 in} 1 The
year 1 of leach row.
maximum erase length shall be one erase operation. (See
clause 20.)

When erased, tape shall be so magnetized that the beginning of the tape is a North-seeking pole and the end of the tape is a South-seeking pole. This criterion shall apply also to inter-block gaps.

18 RECORDING AREA

There shall be a minimum distance of 75 mm (3 in) from the lagging end of the beginning-of-tape reflective marker (BOT) to the first row on the tape. There shall be no

21 DATA CONTENT

ISO 1861:19

standards/siAll 64abinary combinations are permissible in tracks 1 to 6. The line of each row.

22 CONTROL CHARACTERS

For the purpose of separating data, a single row control block (known as a tape mark) shall be allowed. This block shall be accompanied by a longitudinal check row. The tape mark shall be represented by the combination 0011111 in tracks 7 to 1 respectively.

NOTE — The tape mark specified above is internationally standardized, but other marks are also in common usage, and users of this International Standard are advised to ensure that interchange tapes carry mutually recognized marks.

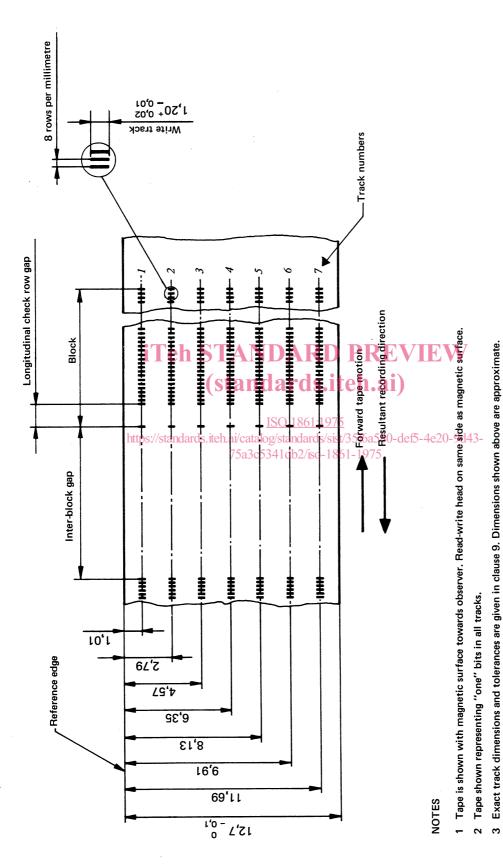
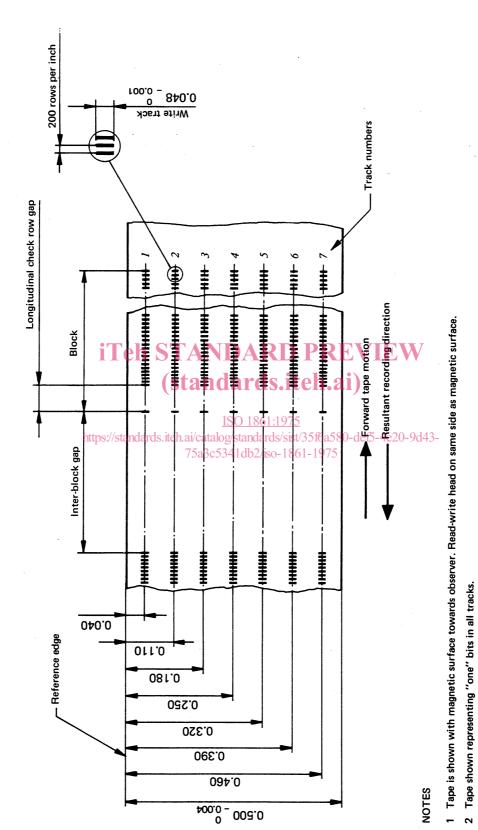
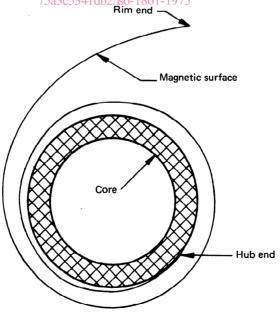




FIGURE 1 — Track layout — Dimensions in millimetres

3 Exact track dimensions and tolerances are given in clause 9. Dimensions shown above are approximate.


FIGURE 2 - Track layout - Dimensions in inches

NOTE — Tape shall not be attached to the hub.

FIGURE 3 — Reflective markers and recording area

ISO 1861:1975 https://standards.iteh.ai/catalog/standards/sist/35f6a580-def5-4e20-9d43-75a3c5341db2/jso-1861-1975 Rim end

NOTES

- 1 Spool viewed from the front. Write-enable ring groove at the rear.
- 2 The tape shall not be attached to the hub.

FIGURE 4 — Direction of tape wind

ANNEX

DETERMINATION OF THE ERASE MAGNETIC FIELD DIRECTION

A.1 PRINCIPLE

The beginning of a correctly erased tape must exhibit a North-seeking pole (see clause 17). When the point of a compass needle which normally indicates North is placed in close proximity to the rim end of a correctly erased tape, the needle will be deflected away from the tape.

A.2 METHOD OF TEST

A section of the erased area of the tape shall be cut in such a way that the end toward the rim end of the tape is identifiable. This end of the cut section is brought as close as possible to the compass needle and the presence or absence of deflection of the needle away from the tape is determined.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 1861:1975 https://standards.iteh.ai/catalog/standards/sist/35f6a580-def5-4e20-9d43-75a3c5341db2/iso-1861-1975