
Information technology — Object 
management group — Interface 
definition language (IDL) 4.2

INTERNATIONAL 
STANDARD

ISO/IEC
19516

Reference number
ISO/IEC 19516:2020(E)

First edition
2020-02

© ISO/IEC 2020

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



 

ISO/IEC 19516:2020(E)
 

ii © ISO/IEC 2020 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

©  ISO/IEC 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may 
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting 
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address 
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



ISO/IEC 19516:2020(E) 

© ISO/IEC 2020 – All rights reserved iii 

Contents 

Foreword ............................................................................................................................................................................ v 

Introduction ....................................................................................................................................................................... v 

1 Scope ............................................................................................................................................................................ 1 
1.1 Overview ...................................................................................................................................................................... 1 

2 Conformance Criteria ................................................................................................................................................. 1 

3 Normative References ................................................................................................................................................. 2 

4 Terms and Definitions ................................................................................................................................................ 2 

5 Symbols ........................................................................................................................................................................ 2 

6 Additional Information ............................................................................................................................................... 3 
6.1 Acknowledgments ....................................................................................................................................................... 3 
6.2 History .......................................................................................................................................................................... 3 

7 IDL Syntax and Semantics ......................................................................................................................................... 4 
7.1 Overview ...................................................................................................................................................................... 4 
7.2 Lexical Conventions .................................................................................................................................................... 5 
7.2.1 Tokens .......................................................................................................................................................................... 8 
7.2.2 Comments .................................................................................................................................................................... 8 
7.2.3 Identifiers ..................................................................................................................................................................... 8 
7.2.4 Keywords ..................................................................................................................................................................... 9 
7.2.5 Other Characters Recognized by IDL ..................................................................................................................... 10 
7.2.6 Literals ....................................................................................................................................................................... 11 
7.3 Preprocessing ............................................................................................................................................................. 13 
7.4 IDL Grammar ........................................................................................................................................................... 13 
7.4.1 Building Block Core Data Types ............................................................................................................................. 14 
7.4.2 Building Block Any ................................................................................................................................................... 30 
7.4.3 Building Block Interfaces — Basic .......................................................................................................................... 31 
7.4.4 Building Block Interfaces — Full ............................................................................................................................ 37 
7.4.5 Building Block Value Types ..................................................................................................................................... 39 
7.4.6 Building Block CORBA-Specific — Interfaces ...................................................................................................... 42 
7.4.7 Building Block CORBA-Specific — Value Types .................................................................................................. 48 
7.4.8 Building Block Components — Basic ...................................................................................................................... 53 
7.4.9 Building Block Components — Homes ................................................................................................................... 56 
7.4.10 Building Block CCM-Specific ............................................................................................................................ 59 
7.4.11 Building Block Components — Ports and Connectors .................................................................................... 64 
7.4.12 Building Block Template Modules .................................................................................................................... 67 
7.4.13 Building Block Extended Data-Types ............................................................................................................... 70 
7.4.14 Building Block Anonymous Types .................................................................................................................... 76 
7.4.15 Building Block Annotations ............................................................................................................................... 77 
7.4.16 Relationships between the Building Blocks ...................................................................................................... 80 
7.5 Names and Scoping ................................................................................................................................................... 81 
7.5.1 Qualified Names ........................................................................................................................................................ 81 
7.5.2 Scoping Rules and Name Resolution ....................................................................................................................... 82 
7.5.3 Special Scoping Rules for Type Names ................................................................................................................... 84 

8 Standardized Annotations ........................................................................................................................................ 86 
8.1 Overview .................................................................................................................................................................... 86 
8.2 Introduction ............................................................................................................................................................... 86 
8.2.1 Rules for Defining Standardized Annotations ........................................................................................................ 86 
8.2.2 Rules for Using Standardized Annotations ............................................................................................................. 86 
8.3 Standardized Groups of Annotations ...................................................................................................................... 86 
8.3.1 Group of Annotations General Purpose .................................................................................................................. 86 
8.3.2 Group of Annotations Data Modeling ..................................................................................................................... 89 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



ISO/IEC 19516:2020(E) 

iv © ISO/IEC 2020 – All rights reserved 

8.3.3 Group of Annotations: Units and Ranges ................................................................................................................ 89 
8.3.4 Group of Annotations Data Implementation .......................................................................................................... 91 
8.3.5 Group of Annotations Code Generation .................................................................................................................. 91 
8.3.6 Group of Annotations Interfaces .............................................................................................................................. 92 

9 Profiles ........................................................................................................................................................................ 93 
9.1 Overview ..................................................................................................................................................................... 93 
9.2 CORBA and CCM Profiles ....................................................................................................................................... 93 
9.2.1 Plain CORBA Profile ................................................................................................................................................ 93 
9.2.2 Minimum CORBA Profile ........................................................................................................................................ 94 
9.2.3 CCM Profile ............................................................................................................................................................... 94 
9.2.4 CCM with Generic Interaction Support Profile ..................................................................................................... 94 
9.3 DDS Profiles ............................................................................................................................................................... 95 
9.3.1 Plain DDS Profile ....................................................................................................................................................... 95 
9.3.2 Extensible DDS Profile .............................................................................................................................................. 95 
9.3.3 RPC over DDS Profile ............................................................................................................................................... 95 

Annex A Consolidated IDL Grammar ........................................................................................................................ 97 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



ISO/IEC 19516:2020(E) 

© ISO/IEC 2020 – All rights reserved v 

Foreword 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form 
the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the 
development of International Standards through technical committees established by the respective organization to deal 
with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. 
Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the 
work. 

The procedures used to develop this document and those intended for its further maintenance are described in the 
ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of document should 
be noted (see www.iso.org/directives). 
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO 
and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified 
during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received 
(see www.iso.org/patents) or the IEC list of patent declarations received (see http://patents.iec.ch).  

Any trade name used in this document is information given for the convenience of users and does not constitute an 
endorsement. 

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to 
conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles 
in the Technical Barriers to Trade (TBT) see  www.iso.org/iso/foreword.html.  

This document was prepared by the Object Management Group (OMG) (as the OMG specification for Interface 
Definition Language (IDL), v4.2) and drafted in accordance with its editorial rules. It was adopted, under the JTC 1 PAS 
procedure, by Joint Technical Committee ISO/IEC JTC 1, Information technology.  

This document is related to: 

• ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1995, Information Technology — Open Distributed 
Processing — Reference Model: Foundations 

• ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1995, Information Technology — Open Distributed 
Processing — Reference Model: Architecture 

• ITU-T Recommendation X.920 (1997) | ISO/IEC 14750:1997, Information Technology — Open Distributed 
Processing — Interface Definition Language 

Apart from this Foreword, the text of this document is identical with that for the OMG specification for Interface 
Definition Language (IDL), v4.2. 

Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing 
of these bodies can be found at www.iso.org/members.html. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



ISO/IEC 19516:2020(E) 

vi © ISO/IEC 2020 – All rights reserved 

Introduction 

The rapid growth of distributed processing has led to a need for a coordinating framework for this standardization and 
ITU-T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-ODP) 
provides such a framework. It defines an architecture within which support of distribution, interoperability, and 
portability can be integrated.  

RM-ODP Part 2 (ISO RM-ODP Part 2 (ISO/IEC 10746-2) defines the foundational concepts and modeling framework 
for describing distributed systems. The scopes and objectives of the RM-ODP Part 2 and the UML, while related, are not 
the same and, in a number of cases, the RM-ODP Part 2 and the UML specification use the same term for concepts which 
are related but not identical (e.g., interface). Nevertheless, a specification using the Part 2 modeling concepts can be 
expressed using UML with appropriate extensions (using stereotypes, tags, and constraints). 

RM-ODP Part 3 (ISO/IEC 10746-3) specifies a generic architecture of open distributed systems, expressed using the 
foundational concepts and framework defined in Part 2. Given the relation between UML as a modeling language and 
Part 3 of the RM-ODP standard, it is easy to show that UML is suitable as a notation for the individual viewpoint 
specifications defined by the RM-ODP.  

This International Standard defines a method for automating the counting of Function Points that is generally consistent 
with the Function Point Counting Practices Manual, Release 4.3.1 (IFPUG CPM) produced by the International Function 
Point Users Group (IFPUG). Guidelines in this International Standard may differ from those in the IFPUG CPM at points 
where subjective judgments have to be replaced by the rules needed for automation. The IFPUG CPM was selected as the 
anchor for this International Standard because it is the most widely used functional measurement specification with a 
large supporting infrastructure maintained by a professional organization.  

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



INTERNATIONAL STANDARD ISO/IEC 19516:2020(E) 

 

© ISO/IEC 2020 – All rights reserved 1 

Information technology — Object management group — 
Interface definition language (IDL) 4.2 

1 Scope  
1.1 Overview 
This International Standard specifies the OMG Interface Definition Language (IDL). IDL is a descriptive language 
used to define data types and interfaces in a way that is independent of the programming language or operating 
system/processor platform. 

The IDL specifies only the syntax used to define the data types and interfaces. It is normally used in connection with 
other standards that further define how these types/interfaces are utilized in specific contexts and platforms: 

•   Separate “language mapping” standards define how the IDL-defined constructs map to specific programming 
languages, such as, C/C++, Java, C#, etc. 

•   Separate “serialization” standards define how data objects and method invocations are serialized into a format 
suitable for network transmission. 

•   Separate “middleware” standards, such as, DDS or CORBA leverage the IDL to define data-types, services, and 
interfaces. 

The description of IDL grammar uses a syntax notation that is similar to Extended Backus-Naur Format (EBNF). 

2 Conformance Criteria 
This International Standard defines IDL such that it can be referenced by other standards. It contains no independent 
conformance points. It is up to the standards that depend on this International Standard to define their own conformance 
criteria. However, the general organization of the clauses (by means of atomic building blocks and profiles that group 
them) is intended to ease conformance description and scoping. That means that no standard using IDL 4.0 will be forced 
to be compliant with IDL constructs that are not relevant in its usage of IDL. 

Conformance to this International Standard must follow these rules: 

 1.  Future standards that use IDL shall reference this IDL International Standard or a future revision thereof. 

 2.  Future revisions of current standards that use IDL may reference this IDL International Standard or a future revision 
thereof. 

 3.  Reference to this International Standard shall result in a selection of building blocks possibly complemented by 
groups of annotations.  

 a.  All selected building blocks shall be supported entirely. 

 b.  Selected annotations shall be either supported as described in 8.2.2 Rules for Using Standardized  Annotations, 
or fully ignored. In the latter case, the IDL-dependent standard shall not define a specific annotation, either with 
the same name and another meaning or with the same meaning and another name. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



ISO/IEC 19516:2020(E) 

2 © ISO/IEC 2020 – All rights reserved 

3 Normative References 
The following referenced documents are indispensable for the application of this International Standard. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced document 
(including any amendments): 

•   ISO/IEC 14882:2003, Information Technology — Programming languages — C++ 

•   [RFC2119] IETF RFC 2119, "Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March 1997. 
Available from http://ietf.org/rfc/rfc2119 

•   [CORBA] Common Object Request Broker Architecture. OMG specification: formal/2012-11-12 (part1),  
formal/2012-11-14 (part2), formal/2012-11-16 (part3) 

The following referenced documents were used as input to this International Standard: 

•   [DDS-XTypes]. Extensible and Dynamic Topic Types for DDS, Version 1.2. Available from: 
 http://www.omg.org/spec/DDS-XTypes/1.2 

•   [DDS]. Data Distribution Service, Version 1.4. Available from: http://www.omg.org/spec/DDS/1.4 

•  [DDS-RPC]. Remote Procedure Call over DDS, Version 1.0. Available from: 
     http://www.omg.org/spec/DDS-RPC/1.0 

4 Terms and Definitions 

In this International Standard: 

•   A building block is a consistent set of IDL rules that together form a piece of IDL functionality. Building blocks are 
atomic, meaning that if selected, they must be totally supported. Building blocks are described in Clause 7, IDL 
Syntax and Semantics. 

•   A group of annotations is a consistent set of annotations, expressed in IDL. Groups of annotations are described in 
Clause 8, Standardized Annotations.  

•   A profile is a selection of building blocks possibly complemented with groups of annotations that determines a 
specific IDL usage. Profiles are described in Clause 9, Profiles. 

5 Symbols 
The following abbreviations are used throughout this International Standard. 

Acronym Meaning 

ASCII American Standard Code for Information Interchange 

BIPM Bureau International des Poids et Mesures 

CCM CORBA Component Model 

CORBA Common Object Request Broker Architecture 

DDS Data Distribution Service 

EBNF Extended Backus Naur Form 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



ISO/IEC 19516:2020(E) 

© ISO/IEC 2020 – All rights reserved 3 

Acronym Meaning 

IDL Interface Definition Language 

ISO International Organization for Standardization 

LwCCM Lightweight CCM 

OMG Object Management Group 

ORB Object Request Broker 

XTypes eXtensible and dynamic topic Types (for DDS) 

6 Additional Information 
6.1 Acknowledgments 

The following companies submitted this International Standard: 

—   Thales 

—   RTI 

The following companies supported this International Standard: 

—   Mitre 

—   Northrop Grumman 

—   Remedy IT 

6.2 History 

Historically, IDL was designed to specify CORBA interfaces and subsequently CORBA components. For this reason 
the IDL standard was embedded in the CORBA documentation. However its expressive power made it very suitable 
for defining non-CORBA interfaces and data types. Consequently, it was used in the DDS standard and extended to 
support that usage. In recognition of these new usages, and expected future ones, IDL was separated into its own 
stand-alone standard, independent of its use by specific middleware technologies. 

This International Standard completes the definition of IDL as a separate standard, an effort started with IDL 3.5.  

IDL 3.5 gathered in a single standard all the CORBA-dedicated IDL, formerly specified as a collection of clauses 
within the CORBA 3 standard.  

IDL 4.0 extended that corpus with the other source for IDL definitions, namely "Extensible and Dynamic Topic Types 
for DDS" in order to group all IDL constructs in a single comprehensive standard. It organized the IDL description 
into modular "Building Blocks" so that different levels of compliance are easier to specify and that future evolutions, 
if needed, can be made without side-effects on existing IDL usages. 

IDL 4.1 improved the definition of the bitset type, added a bitmap type, and resolved some inconsistencies in the 
grammar. 

IDL 4.2 added support for 8-bit integer types, added size-explicit keywords for integer types, enhanced the readability, 
and reordered the building blocks to follow a logical dependency progression.  

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



ISO/IEC 19516:2020(E) 

4 © ISO/IEC 2020 – All rights reserved 

7 IDL Syntax and Semantics 
7.1 Overview 
This clause describes OMG Interface Definition Language (IDL) middleware1-agnostic semantics2 and defines the 
syntax for IDL grammatical constructs. 

OMG IDL is a language that allows unambiguous specification of the interfaces that client objects3 may use and (server) 
object implementations provide as well as all needed related constructs such as exceptions and data types. Data types are 
needed to specify parameters and return value of interfaces' operations. They can be used also as first class constructs. 

IDL is a purely descriptive language. This means that actual programs that use these interfaces or create the associated 
data types cannot be written in IDL, but in a programming language, for which mappings from IDL constructs have been 
defined. The mapping of IDL constructs to a programming language will depend on the facilities available in that 
programming language. For example, an IDL exception might be mapped to a structure in a language that has no notion 
of exceptions, or to an exception in a language that does. The binding of IDL constructs to several programming 
languages is described in separate standards. 

The clause is organized as follows: 

•   The description of IDL’s lexical conventions is presented in 7.2 Lexical Conventions. 

•   A description of IDL preprocessing is presented in 7.3 Preprocessing 

•   The grammar itself is presented in 7.4 IDL Grammar 

•   The scoping rules for identifiers in an IDL standard are described in 7.5. 

IDL-specific pragmas may appear anywhere in a standard; the textual location of these pragmas may be semantically 
constrained by a particular implementation. 

A source file containing specifications written in IDL shall have a ".idl" extension. 

The description of IDL grammar uses a syntax notation that is similar to Extended Backus-Naur Format (EBNF). 
However, to allow composition of specific parts of the description, while avoiding redundancy; a new operator (::+) 
has been added. This operator allows adding alternatives to an existing definition. For example, assuming the rule x 
::= y, the rule x ::+ z shall be interpreted as x ::= y | z. 

Table 7.1 lists the symbols used in this EBNF format and their meaning. 

                                                           
1 In this document the word middleware refers to any piece of software that will make use of IDL-derived artifacts. CORBA and 
   DDS implementations are examples of middleware. The word compiler refers to any piece of software that produces these 
   IDL-derived artifacts based on an IDL specification. 
 
2 I.e., abstract semantics that is applicable to all IDL usages. When needed, middleware-specific interpretations of that abstract 
   semantics will be given afterwards in dedicated clauses. 
 
3  Accordingly, client objects should be understood here as abstract clients, i.e., entities invoking operations provided by object 
   implementations, regardless of the means used to perform this invocation or even whether those implementations are  
   co-located or remotely accessible. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



ISO/IEC 19516:2020(E) 

© ISO/IEC 2020 – All rights reserved 5 

Table 7.1 — IDL EBNF 

Symbol Meaning 

::= Is defined to be (left part of the rule is defined to be right part of the rule) 
| Alternatively 

::+ Is added as alternative (left part of the rule is completed with right part of the 
rule as a new alternative) 

<text> Nonterminal 
"text" Literal 

* The preceding syntactic unit can be repeated zero or more times 
+ The preceding syntactic unit must be repeated at least once 
{} The enclosed syntactic units are grouped as a single syntactic unit 
[] The enclosed syntactic unit is optional – may occur zero or one time 

 

7.2 Lexical Conventions 
This sub clause4 presents the lexical conventions of IDL. It defines tokens in an IDL specification and describes 
comments, identifiers, keywords, and literals - integer, character, and floating point constants and string literals. 

An IDL specification logically consists of one or more files. A file is conceptually translated in several phases. 

The first phase is preprocessing, which performs file inclusion and macro substitution. Preprocessing is controlled by 
directives introduced by lines having # as the first character other than white space. The result of preprocessing is a 
sequence of tokens. Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit. 

IDL uses the ASCII character set, except for string literals and character literals, which use the ISO Latin-1 (8859-1) 
character set. The ISO Latin-1 character set is divided into alphabetic characters (letters) digits, graphic characters, the 
space (blank) character, and formatting characters. Table 7.2 shows the ISO Latin-1 alphabetic characters; upper and 
lower case equivalences are paired. The ASCII alphabetic characters are shown in the left-hand column of Table 7.2. 

Table 7.2 — Characters 

Char. Description Char. Description 

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent 

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent 

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent 

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde 

Ee Upper/Lower-case E Ää Upper/Lower-case A with dieresis 

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above 

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E 

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla 

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent 

                                                           
4 This sub clause is an adaptation of The Annotated C++ Reference Manual, Clause 2; it differs in the list of legal keywords and 
   punctuation. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



ISO/IEC 19516:2020(E) 

6 © ISO/IEC 2020 – All rights reserved 

Char. Description Char. Description 

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent 

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent 

Ll Upper/Lower-case L Ëë Upper/Lower-case E with dieresis 

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent 

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent 

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent 

Pp Upper/Lower-case P Ïï Upper/Lower-case I with dieresis 

Qq Upper/Lower-case Q Ññ Upper/Lower-case N with tilde 

Rr Upper/Lower-case R Òò Upper/Lower-case O with grave accent 

Ss Upper/Lower-case S Óó Upper/Lower-case O with acute accent 

Tt Upper/Lower-case T Ôô Upper/Lower-case O with circumflex accent 

Uu Upper/Lower-case U Õõ Upper/Lower-case O with tilde 

Vv Upper/Lower-case V Öö Upper/Lower-case O with dieresis 

Ww Upper/Lower-case W Øø Upper/Lower-case O with oblique stroke 

Xx Upper/Lower-case X Ùù Upper/Lower-case U with grave accent 

Yy Upper/Lower-case Y Úú Upper/Lower-case U with acute accent 

Zz Upper/Lower-case Z Ûû Upper/Lower-case U with circumflex accent 

  Üü Upper/Lower-case U with dieresis 

  ß Lower-case German sharp S 

  ÿ Lower-case Y with dieresis 

Table 7.3 lists the decimal digit characters. 

Table 7.3 — Decimal Digits 

0 1 2 3 4 5 6 7 8 9 

Table 7.4 shows the graphic characters. 

Table 7.4 — Graphic Characters 

Char. Description Char. Description 

! exclamation point ¡ inverted exclamation mark 

" double quote ¢ cent sign 

# number sign £ pound sign 

$ dollar sign ¤ currency sign 

% percent sign ¥ yen sign 

& ampersand ¦ broken bar 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



ISO/IEC 19516:2020(E) 

© ISO/IEC 2020 – All rights reserved 7 

Char. Description Char. Description 

’ apostrophe § section/paragraph sign 

( left parenthesis ¨ dieresis 

) right parenthesis © copyright sign 

* asterisk ª feminine ordinal indicator 

+ plus sign « left angle quotation mark 

, comma ¬ not sign 

- hyphen, minus sign  soft hyphen 

. period, full stop ® registered trade mark sign 

/ solidus ¯ macron 

: colon ° ring above, degree sign 

; semicolon ± plus-minus sign 

< less-than sign 2 superscript two 

= equals sign 3 superscript three 

> greater-than sign ´ acute 

? question mark µ micro 

@ commercial at ¶ pilcrow 

[ left square bracket • middle dot 

\ reverse solidus ¸ cedilla 

] right square bracket 1 superscript one 

^ circumflex º masculine ordinal indicator 

_ low line, underscore » right angle quotation mark 

‘ grave ¼ 

 

vulgar fraction 1/4 

{ left curly bracket ½ 

 

vulgar fraction 1/2 

| vertical line ¾ 

 

vulgar fraction 3/4 

} right curly bracket ¿ inverted question mark 

~ tilde × multiplication sign 

  ÷ division sign 

The formatting characters are shown in Table 7.5. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



ISO/IEC 19516:2020(E) 

8 © ISO/IEC 2020 – All rights reserved 

Table 7.5 — Formatting Characters 

Description Abbreviation ISO 646 Octal Value 

alert BEL 007 

backspace BS 010 

horizontal tab HT 011 

newline NL, LF 012 

vertical tab VT 013 

form feed FF 014 

carriage return CR 015 

 
7.2.1 Tokens 

There are five kinds of tokens: identifiers, keywords, literals, operators, and other separators.  

Blanks, horizontal and vertical tabs, newlines, form feeds, and comments (collective, "white space") as described below 
are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent 
identifiers, keywords, and constants. 

If the input stream has been parsed into tokens up to a given character, the next token is taken to be the longest string of 
characters that could possibly constitute a token. 

7.2.2 Comments 

The characters  /* start a comment, which terminates with the characters */. These comments do not nest.  

The characters  // start a comment, which terminates at the end of the line on which they occur.  

The comment characters  //,  /*, and  */ have no special meaning within a  // comment and are treated just like other 
characters. Similarly, the comment characters  // and  /* have no special meaning within a  /* comment.  

Comments may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed, and newline characters. 

7.2.3 Identifiers 

An identifier is an arbitrarily long sequence of ASCII alphabetic, digit, and underscore (_) characters. The first character 
must be an ASCII alphabetic character. All characters are significant. 

IDL identifiers are case insensitive. However, all references to a definition must use the same case as the defining 
occurrence. This allows natural mappings to case-sensitive languages.  

7.2.3.1 Collision Rules 

When comparing two identifiers to see if they collide: 

•   Upper- and lower-case letters are treated as the same letter. Table 7.2 defines the equivalence mapping of 
upper- and lower-case letters. 

•   All characters are significant. 

Identifiers that differ only in case collide, and will yield a compilation error under certain circumstances. An identifier for 
a given definition must be spelled identically (e.g., with respect to case) throughout a specification. 

There is only one namespace for IDL identifiers in each scope. Using the same identifier for a constant and an interface, 
for example, produces a compilation error. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020



ISO/IEC 19516:2020(E) 

© ISO/IEC 2020 – All rights reserved 9 

EXAMPLE 

module M { 
 typedef long Foo; 
 const long thing = 1; 
 interface thing {   // Error: reuse of identifier thing 
  void doit ( 
   in Foo foo  // Error: Foo and foo collide…  
   );   //  … and refer to different things 
  readonly attribute long Attribute;  // Error: Attribute collides with keyword… 
      //  … attribute  
  }; 
 }; 

 
7.2.3.2 Escaped Identifiers 

As all languages, IDL uses some reserved words called keywords (see 7.2.4).  

As IDL evolves, new keywords that are added to the IDL language may inadvertently collide with identifiers used in 
existing IDL and programs that use that IDL. Fixing these collisions will require not only the IDL to be modified, but 
programming language code that depends upon that IDL will have to change as well. The language mapping rules for the 
renamed IDL identifiers will cause the mapped identifier names (e.g., method names) to be changed. 

To minimize the amount of work, users may lexically "escape" identifiers by prepending an underscore (_) to an 
identifier. This is a purely lexical convention that ONLY turns off keyword checking. The resulting identifier follows all 
the other rules for identifier processing. For example, the identifier _AnIdentifier is treated as if it were AnIdentifier. 

EXAMPLE 

module M { 
  interface thing { 
   attribute boolean abstract;   // Error: abstract collides with keyword abstract 
   attribute boolean _abstract;   // OK: abstract is an identifier 
   }; 
  }; 
 

NOTE   To avoid unnecessary confusion for readers of IDL, it is recommended that IDL specifications only use the 
escaped form of identifiers when the non-escaped form clashes with a newly introduced IDL keyword. It is also 
recommended that interface designers avoid defining new identifiers that are known to require escaping. Escaped literals 
are only recommended for IDL that expresses legacy items, or for IDL that is mechanically generated. 

7.2.4 Keywords 

The identifiers listed in Table 7.6 are reserved for use as keywords and may not be used for another purpose, unless 
escaped with a leading underscore. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 19516:2020
https://standards.iteh.ai/catalog/standards/sist/373dca1e-21e6-44ef-94f7-

61770f0fcefa/iso-iec-19516-2020


	ß¹Ž2a�¡z7–o;$0‹PaPlË©r0„ÚZÚµceﬁQ¨˝Åê¢}j°Ýðü:”�•äÇ�&Lq$mﬂÀTÍJÔeënžø�ÔTˇKÎı)˜�¹S]þ

