DRAFT INTERNATIONAL STANDARD **ISO/DIS 20808**

ISO/TC 206 Secretariat: **IISC**

Voting begins on: Voting terminates on:

2016-01-29 2015-10-29

Fine ceramics (advanced ceramics, advanced technical ceramics) — Determination of friction and wear characteristics of monolithic ceramics by ball-on-disc method

Céramiques techniques — Détermination des caractéristiques de frottement et d'usure des céramiques monolithiques par la méthode "bille sur disque"

ICS: 81.060.30

Aques de frottema de frottema

THIS DOCUMENT IS A DRAFT CIRCULATED FOR COMMENT AND APPROVAL. IT IS THEREFORE SUBJECT TO CHANGE AND MAY NOT BE REFERRED TO AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL,
TECHNOLOGICAL, COMMERCIAL AND
USER PURPOSES, DRAFT INTERNATIONAL
STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

RECIPIENTS OF THIS DRAFT ARE INVITED SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

Reference number ISO/DIS 20808:2015(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Contents

Page

Forew	ord	iv
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Significance and use	2
5 5.1 5.2 5.3	Test materials and specimen preparation	2
6	Apparatus	3
7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	Testing procedure	4 4 4 5 5
8 8.1 8.1.1 8.1.2 8.2 8.2.1 8.2.2 8.3 8.4	Number of test repeats Calculation of test results Specific wear rate of ball specimen Specific wear rate according to wear volume Specific wear rate according to mass loss Specific wear rate of disc specimen Specific wear rate according to wear volume Specific wear rate according to wear volume Specific wear rate according to mass loss Coefficient of friction Rounding off of numerical values	6 8 8 9
9	Test report	9
Biblio	graphy	11

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 20808 was prepared by Technical Committee ISO/TC 206, Fine ceramics

irst/second/... e
veen technically revis This second/third/... edition cancels and replaces the first/second/... edition (), [clause(s) / subclause(s) / table(s) / figure(s) / annex(es)] of which [has / have] been technically revised.

įν

Fine ceramics (advanced ceramics, advanced technical ceramics) — Determination of friction and wear characteristics of monolithic ceramics by ball-on-disc method

1 Scope

This International Standard specifies a procedure for and provides guidance on the determination of the coefficient of friction and the specific wear rate for monolithic ceramics. In this method, the materials are tested in pairs, in a ball-on-disc configuration, under dry, non-abrasive conditions.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 31-0, Quantities and units — Part 0: General principles

ISO 1101, Geometrical Product Specifications (GPS) Geometrical tolerancing — Tolerances of form, orientation, location and run-out

ISO 3274, Geometrical Product Specifications (GPS) — Surface texture: Profile method — Nominal characteristics of contact (stylus) instruments

ISO 3599, Vernier callipers reading to QY and 0,05 mm

ISO 3611, Micrometer callipers for external measurement

ISO 4287, Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters

ISO 18754, Fine ceramics (advanced ceramics, advanced technical ceramics) — Determination of density and apparent porosity

3 Terms and definitions

For the purposes of this document the following terms and definitions apply.

3.1

wear

alteration of a solid surface by progressive loss or progressive displacement of material due to relative motion between that surface and a contacting substance or substances

3.2

wear test

method of evaluating the friction and wear performance of materials in sliding contact

3.3

ball-on-disc method

one of the wear test methods in which the sliding contact is brought about by pushing a ball specimen on to a rotating disc specimen under a constant load

3.4

friction force

the resisting force tangential to the interface between two bodies when, under the action of an external force, one body moves or tends to move relative to the other

3.5

coefficient of friction

μ

the dimensionless ratio of the friction force between the two bodies, F_f , to the normal force, F_p , pressing these bodies together

$$\mu = F_f/F_p$$

3.6

specific wear rate

 $W_{\rm S}$

Rate of material removal by wear defined as the quotient of wear volume, V, and the product of normal force, F_P , and sliding distance, L, where

$$W_S = V/(F_P \times L)$$

4 Significance and use

This International Standard gives guidance on conducting a sliding friction and wear test in a ball-on-disc configuration. It shall be used to determine the wear resistance and friction generated in uniaxial sliding contacts between ceramics.

It should be noted that there are many parameters in sliding contact that affect the magnitude of friction and wear. The aim of performing any wear test is to simulate, as closely as possible, the conditions that occur in the real application. As the deviation between the test conditions and the application conditions becomes larger, the test results become less relevant. To add credence to the test results, the appearance of the worn surfaces from the test samples shall be compared with the appearance of the worn surface from the actual worn component in order to ensure that similar wear mechanisms have taken place in each case.

The recommended test conditions suggested in this International Standard shall be used when the application conditions are not well defined but general comparison among materials is required.

5 Test materials and specimen preparation

5.1 Materials

This test method can be applied to a variety of materials. The only requirement is that ball and disc specimens having the dimensions specified below can be prepared, and that they shall withstand the stresses imposed during the testing without failure or excessive flexure. In principle, the ball and disc specimen should be from the same material, but ball and disc specimens from different materials can also be tested by this method. Any pertinent details of the materials such as their dimensions, surface finish, material type, composition, microstructure and processing treatments shall be reported.

5.2 Ball specimen

The ball specimen shall be a true sphere of more than 5 mm diameter, or a straight rod whose end part is machined to a spherical cap. The recommended diameter of the sphere is 10 mm. The surface roughness of the specimen shall be not more than $0.1 \mu m$ Ra as specified in ISO 4287.

5.3 Disc specimen

The disc specimen shall be more than 3 mm in thickness and be large enough to enable the testing surface to contain a sliding circle of more than 30 mm diameter. The surfaces of the disc shall be flat and parallel to within 0,02 mm as specified in ISO 1101. The roughness of the test surface shall be not more than 0,1 μ m Ra as specified in ISO 4287.

6 Apparatus

6.1 Ball-on-disc method testing apparatus.

The testing apparatus shall consist of:

- the disc holder, for securing a disc specimen;
- the drive system for rotating the disc;
- the ball holder for gripping a ball specimen;
- the loading mechanism for pushing the ball specimen on to the disc specimen;
- the equipment for measuring the friction force and the linear wear;
- the equipment for controlling the testing atmosphere;
- the ancillary devices for the above.
- a) The disc holder shall rotate in a horizontal or vertical plane. The eccentricity of rotating axis shall be less than 0,02 mm and the fluctuation at the contact point in the direction perpendicular to the disc shall be less than 0,05 mm.
- b) The drive system shall be capable of giving a controllable sliding speed that is stable under the influence of the friction forces that are generated. The drive system shall be fitted with a revolution counter or equivalent device.
- c) The ball holder shall firmly grip the ball specimen and have a high rigidity with respect to the stress generated at the contact point with the disc specimen.
- d) The loading mechanism shall apply a controlled load to the ball holder directly or through a lever-arm device with attached weight, or by a hydraulic or pneumatic system.
- e) The friction force shall be measured by means of mechanisms, such as a load cell, distortion of a leaf spring or measurement of rotational torque. The measurement should not affect the frictional condition. The accuracy of friction measurement shall be ± 1 % or better of the applied load. A device for measuring the linear wear is optional, but when provided it should have a sensitivity of 2,5 µm or better.
- f) The testing atmosphere shall be controlled to within ± 2 °C of the set temperature and the relative humidity to 50 % \pm 10 %. Alternatively, the testing apparatus itself can be placed in a room with conditions controlled to these limits.
- g) If the specification of testing apparatus is different from the above, it shall be described in the test report.
- **6.2** Balance, capable of measuring the mass of the specimen to the nearest 0,01 mg.

© ISO 2015 – All rights reserved

- 6.3 Micrometer calliper, capable of measuring as specified in ISO 3611 or equivalent or better.
- 6.4 **Vernier calliper**, having a resolution of 0,05 mm as specified in ISO 3599 or equivalent or better.
- 6.5 **Micrometer microscope**, capable of reading to the nearest 0,01 mm.
- 6.6 Contact stylus profilometer, as specified in ISO 3274 or at least equal thereto in precision.

Testing procedure

Determination of specimen density 7.1

Measure the diameter of the ball specimen and the diameter and thickness of the disc specimen using a micrometer calliper (6.3), vernier calliper (6.4) or equivalent, and calculate the density of the specimen from the mass measured in accordance with 7.3. The density value measured by another method having equivalent or superior precision can also be used, e.g., density determination in accordance with ISO 18754.

Treatment of specimen before test

Wash specimens ultrasonically in high purity acetone for 10 min or longer, with the testing surface downwards in the case of the disc specimen. Without allowing them to dry, the specimens should be rinsed with high purity hexane and then dried for 30 min or longer in an oven set at 120 °C. Acetone and/or hexane can be replaced with other solvents or deionized water as long as clean specimen surfaces are produced at the end of the procedure. The specimens shall be stored in the same atmosphere as that used for the wear testing 7.3 Measurement of mass before test

Measure the mass of each specimen by weighing it with a balance (6.2) immediately before the wear test.

Preparation of wear test 7.4

Clamp the ball and disc specimen firmly in position in their respective holders and bring them gently into contact, then apply the set load. After the testing atmosphere has stabilized for at least 30 min, start the test by rotating the disc at the set condition.

Testing conditions 7.5

Recommended test conditions are listed below, but can be changed to suit the particular needs of the measuring process. All test conditions shall be described in the test report.

- Applied load: 10 N. a)
- Sliding speed: 0,1 m/s; the diameter of the sliding circle should be more than 30 mm and the rotational velocity of disc holder be determined from

$$v_{\rm r} = v/2\pi R$$
.

where

- is the rotational velocity, in rotations per second (s^{-1});
- is the sliding speed, in metres per second; v
- is the sliding circle radius, in metres. R

- Sliding distance: 2 000 m.
- **Testing atmosphere**: air at room temperature; the temperature should be controlled to within \pm 2 $^{\circ}$ C and the relative humidity to within 50 % \pm 10 %.

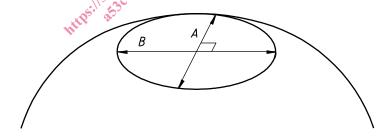
7.6 Measurement of friction force

Measure the friction force continuously during the test and record it by using a data logger or other recording device. An appropriate system for averaging the fluctuation with rotation period shall be adopted. Before the test starts, the zero of the friction force measurement device should be checked with the specimens not in contact with one another.

Measurement of mass after test

After the wear test has been completed, give the specimens the same cleaning treatment as in 7.2, and then measure the mass using the same balance as in 7.3. The wear debris on the disc specimen shall be carefully collected for further analysis before this treatment.

7.8 Measurement of wear scar on ball specimen


On completion of the test there will be a roughly circular scar on the ball specimen, as shown in Figure 1. Measure the minimum diameter, A, and the diameter in a direction perpendicular to it, B, by using the micrometer microscope (6.5).

7.9 Measurement of wear track on disc specimen

On completion of the test there will be a wear track on the disc specimen, as shown in Figure 2. Measure the cross-sectional profile of the wear track at four places $(S_1 - S_4)$ at intervals of 90° using a contact stylus profilometer (6.6) or similar instrument and calculate the cross-sectional area of the wear track at each position.

7.10 Number of test repeats

Repeat the wear test at least three times under the same testing conditions.

Key

- minimum diameter
- perpendicular diameter

Figure 1 — Wear scar on ball specimen