INTERNATIONAL STANDARD ISO/IEC 19592-2 First edition 2017-10 # Information technology — Security techniques — Secret sharing — Part 2: **Fundamental mechanisms** Technologies de l'information — Techniques de sécurité — Partage de iTeh STANDARD PREVIEW Partie 2: Mécanismes fondamentaux (standards.iteh.ai) ISO/IEC 19592-2:2017 https://standards.iteh.ai/catalog/standards/sist/f9d67a7a-bed8-41fb-bf47-4d88a8766aa3/iso-iec-19592-2-2017 # iTeh STANDARD PREVIEW (standards.iteh.ai) ISO/IEC 19592-2:2017 https://standards.iteh.ai/catalog/standards/sist/f9d67a7a-bed8-41fb-bf47-4d88a8766aa3/iso-iec-19592-2-2017 ## COPYRIGHT PROTECTED DOCUMENT #### © ISO/IEC 2017, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Contents | | | | |----------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----| | Fore | eword | | iv | | Intr | oductio | on | v | | 1 | | oe | | | | • | | | | 2 | Normative references | | | | 3 | Terms and definitions | | | | 4 | Symbols and abbreviated terms | | | | 5 | Secret sharing schemes | | | | J | 5.1 | General | | | | 5.2 | Shamir secret sharing scheme | | | | 0.2 | 5.2.1 General | | | | | 5.2.2 Parameters | | | | | 5.2.3 Message sharing algorithm | | | | | 5.2.4 Message reconstruction algorithm | | | | | 5.2.5 Properties | | | | 5.3 | Ramp Shamir secret sharing scheme | | | | | 5.3.1 General | | | | | 5.3.2 Parameters | | | | | 5.3.3 Message sharing algorithm | | | | | | | | | | 5.3.4 Message reconstruction algorithm | 6 | | | 5.4 | Additive secret sharing scheme for a general adversary structure 5.4.1 General | 6 | | | | 5.4.1 General (Standard Steel) | 6 | | | | 5.4.2 Parameters | 6 | | | | 5.4.2 Parameters 5.4.3 Message sharing algorithm 2-2-2017 5.4.4 Message reconstruction algorithm 67a7a-bed8-41fb-bf47- 5.4.5 Properties 4d88a8766aa3/iso-iec-19592-2-2017 | 7 | | | | 5.4.4 http://www.sage.reconstruction.algorithm.b/a/a-bed8-41tb-bt4/- | 7 | | | | 5.4.5 Properties 4088 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 8 / 608 | 7 | | | 5.5 | Replicated additive secret sharing scheme | 7 | | | | 5.5.1 General | | | | | 5.5.2 Parameters | | | | | 5.5.3 Message sharing algorithm | | | | | 5.5.4 Message reconstruction algorithm | | | | | 5.5.5 Properties | 8 | | | 5.6 | Computational additive secret sharing scheme | | | | | 5.6.1 General | | | | | 5.6.2 Parameters | | | | | 5.6.3 Message sharing algorithm | | | | | 5.6.4 Message reconstruction algorithm | | | | | 5.6.5 Properties | | | | | 5.6.6 Conversion protocol | | | | • | formative) Object identifiers | | | | • | formative) Numerical examples | | | Bibl | liograpl | ıy | 22 | ### **Foreword** ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. This document was prepared by Technical Committee 180/IEC JTC 1, Information technology, Subcommittee SC 27, IT security techniques. a/catalog/standards/sist/19d67a7a-bed8-41fb-bf47-4d88a8766aa3/iso-iec-19592-2-2017 A list of all parts in the ISO/IEC 19592 series can be found on the ISO website. ## Introduction A secret sharing scheme is a cryptographic technique used to protect the confidentiality of a message by dividing it into a number of pieces called shares. A secret sharing scheme has two main parts: a message sharing algorithm for dividing the message into shares and a message reconstruction algorithm for recovering the message from all or a subset of the shares. The fundamental functions of a secret sharing scheme are sharing and reconstructing the message. A secret sharing scheme can also have optional features such as reconstructing the message when some shares provided for reconstruction are erroneous. This document specifies cryptographic secret sharing schemes which possess the two fundamental functions of message confidentiality and message recoverability. Secret sharing can be used to store data (for example, confidential values or cryptographic keys) securely in distributed systems. Moreover, secret sharing is a fundamental technology for secure multi-party computation that can be used to protect the processing of data in a distributed system. To facilitate the effective use of the technology and to maintain interoperability, ISO/IEC 19592 (all parts) specifies secret sharing and related technology. NOTE Annex A lists the object identifiers assigned to the secret sharing fundamental mechanisms specified in this document. Annex B provides numerical examples. # iTeh STANDARD PREVIEW (standards.iteh.ai) ISO/IEC 19592-2:2017 https://standards.iteh.ai/catalog/standards/sist/f9d67a7a-bed8-41fb-bf47-4d88a8766aa3/iso-iec-19592-2-2017 # iTeh STANDARD PREVIEW (standards.iteh.ai) ISO/IEC 19592-2:2017 https://standards.iteh.ai/catalog/standards/sist/f9d67a7a-bed8-41fb-bf47-4d88a8766aa3/iso-iec-19592-2-2017 # Information technology — Security techniques — Secret sharing — # Part 2: # **Fundamental mechanisms** # 1 Scope This document specifies cryptographic secret sharing schemes. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO/IEC 19592-1:2016, Information technology — Security techniques — Secret sharing — Part 1: General # iTeh STANDARD PREVIEW # 3 Terms and definitions standards.iteh.ai) For the purposes of this document, the terms and definitions given in ISO/IEC 19592-1 and the following apply. ISO/IEC 19592-2:2017 ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp #### 3.1 #### abelian group group (3.8) (G, +) such that a + b = b + a for every a and b in G [SOURCE: ISO/IEC 15946-1:2016, 3.1, modified] #### 3.2 #### complexity number of unit operations required to execute a procedure #### 3.3 #### conversion protocol protocol that converts the shares of a secret sharing scheme to the shares of another secret sharing scheme #### 3.4 # deterministic random bit generator DRBG random bit generator that produces a random-appearing sequence of bits by applying a deterministic algorithm to a suitably random initial value called a seed and, possibly, some secondary inputs upon which the security of the random bit generator does not depend Note 1 to entry: A DRBG takes a high-entropy, kept-secret random string as input and outputs a longer string of bits which is computationally indistinguishable from random data to adversaries not knowing the input. [SOURCE: ISO/IEC 18031:2011, 3.10, modified] ### ISO/IEC 19592-2:2017(E) # 3.5 #### field set of elements K and a pair of operations (+, *) defined on K such that: (i) a * (b + c) = a * b + a * c for every a, b and c in K, (ii) K together with + forms an $abelian\ group\ (3.1)$ (with identity element 0), and (iii) K excluding 0 together with * forms an $abelian\ group$ [SOURCE: ISO/IEC 15946-1:2016, 3.4, modified] #### 3.6 ## finite cyclic group abelian group (3.1) G such that there exist g in G, where every g in G is specified in g or a self-addition of g #### 3.7 #### finite field field (3.5) containing a finite number of elements [SOURCE: ISO/IEC 15946-1:2016, 3.5, modified] ## 3.8 ### group set of elements G and an operation + defined on the set of elements such that (i) a + (b + c) = (a + b) + c for every a, b and c in G, (ii) there exists an identity element e in G such that a + e = e + a = a for every a in G, and (iii) for every a in G there exists an inverse element a^{-1} in G such that $a + a^{-1} = a^{-1} + a = e$ [SOURCE: ISO/IEC 15946-1:2016, 3.6, modified] # iTeh STANDARD PREVIEW # information dispersal algorithm # (standards.iteh.ai) algorithm that includes two separated sub-algorithms: a splitting algorithm that splits a message into n components and a recover algorithm that recovers the finessage from any k of the n components, where k and n are integers and $n \ge k$ standards.iteh.ai/catalog/standards/sist/f9d67a7a-bed8-41fb-bf47- 4d88a8766aa3/iso-iec-19592-2-2017 j Note 1 to entry: Unlike in a secret sharing scheme, there is no guarantee of security. That is, it can be possible to reconstruct the secret or parts of the secret from less than k components. # 4 Symbols and abbreviated terms | $a \in A$ | a is an element of A | |---------------|-------------------------------------------------| | $A \subset B$ | A is a subset of B | | A | number of elements of A | | $A \times B$ | direct product of A and B | | A^m | set of <i>m</i> -tuples of elements of <i>A</i> | | $_{i}C_{j}$ | binomial coefficient, namely i choose | | $[a]_i$ | <i>i</i> -th share of secret <i>a</i> | | n | number of shares | | k | threshold of shares | | G | finite cyclic group | | K | finite field | K[x] set of all polynomials in x with coefficient in K Split message splitting algorithm of an IDA scheme Rec message reconstruction algorithm of an IDA scheme Share message sharing algorithm of a secret sharing scheme Reconst message reconstruction algorithm of a secret sharing scheme HomShare message sharing algorithm of a homomorphic secret sharing scheme HomReconst message reconstruction algorithm of a homomorphic secret sharing scheme # 5 Secret sharing schemes #### 5.1 General In this document, each of <u>5.2</u>, <u>5.3</u>, <u>5.4</u>, <u>5.5</u> and <u>5.6</u> contains a specification of one or more secret sharing schemes. For each secret sharing scheme, the following items are listed. #### a) Parameters - 1) Message space, i.e. the set of possible messages which can be input to the message sharing algorithm. **iTeh STANDARD PREVIEW** - 2) Share space, i.e. the sets of possible shares which can be output by the message sharing algorithm. - 3) Number of shares, i.e. the range of possible values of *n* supported by the scheme. https://standards.iteh.ai/catalog/standards/sist/f9d67a7a-bed8-41fb-bf47- - 4) One of the following properties that represent which shares are required for the reconstruction: - i) Threshold, i.e. a positive number k such that any k shares are sufficient for a successful completion of the message reconstruction algorithm. - ii) Access structure, i.e. the minimal set of possible subsets of shares that are needed as input in order for the message reconstruction algorithm to successfully output the message. - iii) Adversary structure, i.e. the set of subsets of shares that is not possible to reconstruct the message. - 5) Other parameters (if applicable). - b) Description of the message sharing algorithm, i.e. the method for dividing a message into shares. - c) Description of the message reconstruction algorithm, i.e. the method for reconstructing the message from a set of shares. - d) Properties of the secret sharing scheme (see ISO/IEC 19592-1:2016, Clause 4). - NOTE 1 None of the secret sharing schemes specified in this document possesses the verifiability property. - NOTE 2 In the mechanisms specified in this document, elements are chosen at random from some (finite) set. All such choices are made uniformly (or near uniformly) at random from the set of possible values. - NOTE 3 If the message space is a group or field, arithmetic operations are performed in this group or field. ## 5.2 Shamir secret sharing scheme #### 5.2.1 General The parameters, message sharing algorithm, message reconstruction algorithm and properties of the Shamir secret sharing scheme [8] are described in 5.2. #### 5.2.2 Parameters Message space: K. Share space: same as the message space. Number of shares: n, such that $n \ge 2$, n < |K|. Threshold: k, such that $n \ge k \ge 2$. Fixed field elements: $x_i \in K$ for $1 \le i \le n$. NOTE It is assumed that the fixed field elements are known to the receiver. These elements can be sent to the receiver with the corresponding share or published as system parameters. ### 5.2.3 Message sharing algorithm Input: message $a \in K$. Output: share vector $([a]_1,...,[a]_n) \in K^n$. a) Randomly select $r_1,..., r_{k-1} \in K$. (standards.iteh.ai) - b) Compute $[a]_i = a + \sum_{j=1}^{k-1} n_j x_i^j \in Kn$ for $Sit \le i \le 0$ ratios/standards/sist/f9d67a7a-bed8-41fb-bf47-4d88a8766aa3/iso-iec-19592-2-2017 - c) Output $([a]_1,..., [a]_n) \in K^n$. #### 5.2.4 Message reconstruction algorithm Input: share vector $([a]_{i_1},...,[a]_{i_k}) \in K^k$. Output: message $a \in K$. a) Compute $$a = \sum_{j=1}^{k} [a]_{i_j} \prod_{u=1, u \neq j}^{k} (0 - x_{i_u}) / (x_{i_j} - x_{i_u}) \in K$$. b) Output $a \in K$. NOTE The reconstruction algorithm is known as Lagrange interpolation. If $f(x) = a + \sum_{j=1}^{k-1} r_j x^j$ then the secret is f(0) and each share $[a]_i$ is $f(x_i)$. Since f(x) is a polynomial of degree k, f(0) can be computed from k coordinates using Lagrange interpolation. #### 5.2.5 Properties Confidentiality: The Shamir secret sharing scheme is perfectly information-theoretically confidential when the receiver has access to less than k shares of the message. Information rate: The Shamir secret sharing has an information rate of 1, as the size of a message and a share are the same as the size of an element of the finite field *K*. Thus, the scheme is ideal. Homomorphic operations: The Shamir secret sharing scheme is (+, +)-homomorphic where addition on share vectors is performed by computing $[a + a']_i = [a]_i + [a']_i$. Complexity: The message sharing algorithm requires (k-1)n multiplications and (k-1)n additions. The message reconstruction algorithm requires k divisions, $2k^2 - 3k$ multiplications and $k^2 - 1$ additions. If anything that does not involve a or r_j for $1 \le j \le k-1$ is preliminary prepared, both algorithms require k multiplications and k-1 additions. ### 5.3 Ramp Shamir secret sharing scheme #### 5.3.1 General The parameters, message sharing algorithm, message reconstruction algorithm and properties of the ramp version of the Shamir secret sharing scheme^[3] are described in <u>5.3</u>. This mechanism is a generalization of the scheme specified in <u>5.2</u>. It reduces the size of each share in relation to the message to be reconstructed by a factor of L. Although k shares are still required to reconstruct the message, any number of shares greater than (k-L) reveals partial information about it. The parameters k and k can be chosen flexibly following the restriction $k \ge L \ge 1$. NOTE 1 The ramp Shamir secret sharing scheme with the parameter L=1 is equivalent to the Shamir secret sharing scheme specified in 5.2. NOTE 2 In information-theoretically secure secret sharing schemes, each share of a secret is at least the size of the secret. There are two approaches to mitigate this. One is to rely on computational hardness assumptions instead of information theoretic security. The other is the use of ramp secret sharing schemes. In the ramp scheme, shares can be shorter than the size of the secret, while there are sets of shares that are not meant to allow access but which leak information about the secret. #### 5.3.2 Parameters ISO/IEC 19592-2:2017 Message space: K^L. https://standards.iteh.ai/catalog/standards/sist/f9d67a7a-bed8-41fb-bf47-4d88a8766aa3/iso-iec-19592-2-2017 Share space: finite field *K*. Number of shares: n, satisfying $n \ge 2$, n < |K|. Threshold: k, satisfying $n \ge k \ge 2$. Number of embedded messages: L, satisfying $k \ge L \ge 1$. Fixed field elements: $x_i \in K$ for $1 \le i \le n$. NOTE The fixed field elements can be sent to the receiver with the corresponding shares or published as system parameters. # 5.3.3 Message sharing algorithm Input: message $(a_1,...,a_L) \in K^L$. Output: share vector $([(a_1,...,a_L)]_1,...,[(a_1,...,a_L)]_n) \in K^n$. a) Randomly select $r_{L_1,...,r_{k-1}} \in K$. b) Compute $$\left[\left(a_{1},...,a_{L}\right)\right]_{i} = \sum_{j=0}^{L-1} a_{j+1} x_{i}^{j} + \sum_{j=L}^{K-1} r_{j} x_{i}^{j} \in K \text{ for } 1 \leq i \leq n.$$ c) Output $([(a_1,...,a_L)]_1,...,[(a_1,...,a_L)]_n) \in K^n$. #### 5.3.4 Message reconstruction algorithm Input: share vector $\left(\left[\left(a_{1},...,a_{L}\right)\right]_{i_{1}},...,\left[\left(a_{1},...,a_{L}\right)\right]_{i_{k}}\right)\in K^{k}$. Output: messages $\left(a_{1},...,a_{L}\right)\in K^{L}$. a) Define polynomial $$f(x) = \sum_{j=1}^{k} \left[(a_1, ..., a_L) \right]_{i_j} \prod_{u=1, u \neq j}^{k} \left(x - x_{i_u} \right) / \left(x_{i_j} - x_{i_u} \right) \in K[x].$$ - b) Compute $f(x) = \sum_{i=0}^{k-1} b_{i+1} x^i \in K[x]$ and set $a_i = b_i$ for $1 \le i \le L$. - c) Output $(a_1,..., a_L) \in K^L$ #### 5.3.5 Properties Confidentiality: The ramp version of the Shamir secret sharing scheme is information-theoretically confidential when the receiver has access to less than k-L+1 shares. When the receiver has access to more than k-L shares but less than k, partial information is revealed. This reduction in security is quantified as follows: if an entity knows k-L+i shares for some i ($1 \le i \le L-1$) then the entity knows the secret message lies within a set of size $|K|^{L-i}$. Information rate: The ramp version of the Shamir secret sharing scheme has an information rate of L as the size of a message is equal to L times the size of a field element and the size of a share is the same as the size of a field element. **TANDARD PREVIEW** Homomorphic operations: The ramp version of the Shamir secret sharing scheme is (+, +)-homomorphic where addition on share vectors is performed by computing $[(a_1 + a'_1, ..., a_L + a'_L)]_i = [(a_1, ..., a_L)]_i + [(a'_1, ..., a'_L)]_i$. ISO/IEC 19592-2:2017 Complexity: The message sharing algorithm requires (k-1)n multiplications and (k-1)n additions. The message reconstruction algorithm requires k(k-1)(k+1)/3 divisions, k(k-1)/2 multiplications and k(k-1)(2k+5)/6 additions using the Gaussian elimination method. If anything that does not involve a or r_j for $L \le j \le k-1$ is preliminary prepared, the message sharing algorithm requires k multiplications and k-1 additions. ## 5.4 Additive secret sharing scheme for a general adversary structure #### 5.4.1 General The parameters, message sharing algorithm, message reconstruction algorithm and properties of the additive secret sharing scheme for a general adversary structure^[5] are described in 5.4. Let A be the adversary structure that contains m subsets of the numbers $\{1, 2, ..., n\}$ of variable size representing groups of adversaries. The algorithms are arranged so that no set of adversaries in A can collaborate to recover a. Let the elements of A be labelled Z_j , j=1,2,...,m. In the message sharing algorithm, values r_{Z_1} ,..., $r_{Z_{m-1}}$ are generated uniformly at random within the field and $r_{Z_m} = a - \left(r_{Z_1} + \cdots + r_{Z_{m-1}}\right)$. Share $[a]_i$ then consists of all the r values whose indices do not contain the value i, where i=1,2,...,n. NOTE 1 The adversary structure denotes the set of all maximal coalitions of participants who cannot recover the secret. NOTE 2 A complementary concept to the notion of the adversary structure of a secret sharing scheme is the access structure of the scheme. The access structure contains all minimal coalitions of participants of the scheme who can jointly recover the secret. #### 5.4.2 Parameters Message space: G.