INTERNATIONAL STANDARD

First edition 2016-11-01

Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for determining elastic modulus and bending strength of thick ceramic coatings

iTeh ST du module élastiques — Méthode d'essai relative à la détermination céramique élastique et de la résistance en flexion des revêtements de céramique épais (standards.iteh.ai)

ISO 19603:2016 https://standards.iteh.ai/catalog/standards/sist/1928b305-1d20-463f-84b6-7128e141797b/iso-19603-2016

Reference number ISO 19603:2016(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 19603:2016</u> https://standards.iteh.ai/catalog/standards/sist/1928b305-1d20-463f-84b6-7128e141797b/iso-19603-2016

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Contents

Page

word		iv
Scop	ie	
Norr	native references	
Tern	ns and definitions	
Sym	bols	2
Prin	ciple	2
Арра	aratus	
Test 7.1 7.2	Test piece size Test piece preparation 7.2.1 Test piece machining 7.2.2 Test piece handling and storage	3 4 4 4
8.1 8.2 8.3 8.4 8.5	Testing machine and loading speed Elastic modulus measurement Bending strength measurement Coating thickness measurement Temperature and relative humidity	4 4 5 6 6
Calc 9.1 9.2	ulation of results (standards.iteh.ai) Calculation of elastic modulus 9.1.1 Calculation of elastic modulus in bending test 9.1.2 _{https} Mean value and standard deviation for elastic modulus Calculation of bending strength 9.2.1 Calculation for bending strength of the ceramic coating	6 6 7 8 8
Anal	ysis of precision and uncertainty	9
Test	report	
ograpl	ıy	
	Scop Norr Tern Symi Prin Appa Test 7.1 7.2 Test 8.1 8.2 8.3 8.4 8.5 Calcu 9.1 9.2 Anal Test	 7.2 Test piece preparation 7.2.1 Test piece machining 7.2.2 Test piece handling and storage 7.2.3 Number of test pieces Test procedure 8.1 Testing machine and loading speed 8.2 Elastic modulus measurement 8.3 Bending strength measurement 8.4 Coating thickness measurement 8.5 Temperature and relative humidity Calculation of results (standards.iteh.ai) 9.1 Calculation of elastic modulus 9.1.1 Calculation of elastic modulus 9.1.2 Calculation of bending strength To for elastic modulus 9.2 Calculation of bending strength To for elastic modulus 9.2 Calculation for bending strength of the ceramic coating

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

The committee responsible for this document is ISO/TC 206, *Fine ceramics*.

<u>ISO 19603:2016</u> https://standards.iteh.ai/catalog/standards/sist/1928b305-1d20-463f-84b6-7128e141797b/iso-19603-2016

Fine ceramics (advanced ceramics, advanced technical ceramics) — Test method for determining elastic modulus and bending strength of thick ceramic coatings

1 Scope

This document specifies a testing method for determining the elastic modulus and bending strength of thick ceramic coatings at ambient temperature by three-point bending tests. Procedures for test piece preparation, test modes and load rates, data collection and reporting are given.

This document applies to thick, brittle coatings on metal or ceramic substrates. This test method can be used for material research, quality control, characterization and design data-generation purposes.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3611, Geometrical product specifications (GPS) — Dimensional measuring equipment: Micrometers for external measurements — Design and metrological characteristics

ISO 7500-1, Metallic materials — Calibration and verification of static uniaxial testing machines — Part 1: Tension/compression testing machines — <u>Galibration and</u> verification of the force-measuring system

https://standards.iteh.ai/catalog/standards/sist/1928b305-1d20-463f-84b6-

7128e141797b/iso-19603-2016

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at <u>http://www.iso.org/obp</u>

3.1

elastic modulus

ratio of stress to strain

Note 1 to entry: Also known as Young's modulus.

3.2

bending strength

maximum tensile stress at fracture under bending load

3.3

modulus ratio

ratio of the coating modulus to the substrate modulus

3.4

thickness ratio

ratio of the coating thickness to the substrate thickness

3.5

deflection ratio

ratio of the deflection increment of uncoated substrate to the deflection increment of coated test piece under a given load increment for three-point bending test

4 Symbols

For the purposes of this document, the symbols and designations given in <u>Table 1</u> apply.

Symbol	Designation	Unit	References
Н	Thickness of substrate	mm	<u>Figure 1</u> Formula (1)
h	Thickness of coating	mm	<u>Figure 1</u>
В	Width of test piece	mm	<u>Figure 1</u>
Р	Peak load	Ν	<u>Figure 2</u>
L	Span of test piece	mm	<u>Formula (1)</u> Formula (5)
Е	Elastic modulus	GPa	<u>Formula (1)</u>
Ec	Elastic modulus of coating	GPa	<u>Formula (2)</u>
Es	Elastic modulus of substrate CT AND ADD DI	GParty	<u>Formula (2)</u>
α	Elastic modulus of substrate STANDARP P Ratio of the elastic modulus of the coating to that of the substrate (standards.iteh	.ai)	<u>Formula (2)</u> Formula (5)
f	Deflection	mm	<u>Formula (1)</u>
$\sigma_{ m c}$	Bending strength of coating ISO 19603:2016	МРа	<u>Formula (5)</u>
Pc	Critical fracture for distandards.iteh.ai/catalog/standards/sist/1928	o305-1d № -463f-841	b6- <u>Formula (5)</u>
Уc	Distance from the tensile surface to the neutral axis	¹⁶ mm	<u>Formula (5)</u>
Ι	Moment of inertia of the test pieces	mm ⁴	<u>Formula (5)</u>
ΔP	Load increment	N	<u>Formula (1)</u>
Δf	Deflection increment	mm	<u>Formula (1)</u>
п	Effective test number	numerical	Formula (3) Formula (4) Formula (6) Formula (7)
$\bar{\sigma}$	Mean value of bending strength	МРа	<u>Formula (6)</u> Formula (7)
σ_i	Bending strength of the <i>i</i> th test piece	МРа	<u>Formula (6)</u> Formula (7)
\overline{E}	Mean value of elastic modulus	GPa	<u>Formula (3)</u> Formula (4)
E _i	Elastic modulus of the <i>i</i> th test piece	GPa	<u>Formula (3)</u> Formula (4)
Se	Standard deviation of measured elastic modulus	GPa	<u>Formula (4)</u>
S_{σ}	Standard deviation of measured bending strength	МРа	<u>Formula (7)</u>

Table 1 — Symbols and designations

5 Principle

The elastic modulus and bending strength of thick ceramic coatings on metal or ceramic substrates can be evaluated using three-point bending tests. The elastic modulus of the coating is deduced by comparing the deformation of a coated test piece and of the uncoated substrate under identical loads. A precondition of this method is that the elastic modulus of the substrate is known or can be measured

before or after the test. The bending strength of the coating is determined using the critical load for cracking in the coating and the sample size. This indirect test method is called the relative method.

6 Apparatus

6.1 Testing machine

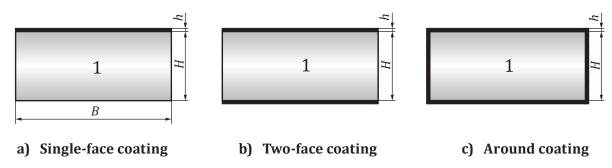
A suitable testing machine capable of applying a uniform crosshead speed and compliant with ISO 7500-1 shall be used. The loading speed should be constant. The measuring error shall be 1 % or lower.

6.2 Data acquisition

Record the applied load as a function of crosshead displacement or testing time in order to determine the maximum applied load.

An analog chart recorder or digital data collection system should be used. The error of the recording system shall be 1 % or lower. The minimum data collection frequency shall be 15 Hz, and a response frequency of 50 Hz is deemed adequate.

6.3 Dimensional measuring devices


The dimensions of the test piece shall be measured using a Vernier caliper complying with ISO 3611 and with a precision of 0,02 mm or better, or other calibrated measuring device providing the same or better measurement accuracy. Coating thickness shall be measured by using a calibrated optical microscope with magnification of 1 000 times or better. Sample displacement shall be measured using a calibrated electronic micrometer with a precision of at least 0,001 mm and resolution of 0,000 5 mm or better, or other measuring device providing the same or better measurement accuracy. All calibrations shall be traceable to national standards.

ISO 19603:2016 https://standards.iteh.ai/catalog/standards/sist/1928b305-1d20-463f-84b6-7128e141797b/iso-19603-2016

7 Test pieces

7.1 Test piece size

In order to simplify the preparation of test pieces, rectangular section test pieces with three different coating configurations are considered: coating on lower surface of the test pieces only [single-face coating, Figure 1 a)], coating on upper and lower surfaces of the test pieces only [two-face coating, Figure 1 b)] and coating on four surfaces of a test pieces [around coating, Figure 1 c)]. Any of the three coating configurations may be used for evaluating the properties of the coating layer. The geometrical dimensions of coated test piece are displayed in Figure 1. Test piece dimensions shall be 36 mm long, 4 mm wide and 2 mm thick or larger with the same dimensional ratio. The thickness ratio, h/H, should be larger than 1/100. The thickness of the coating shall be larger than 20 µm.

Кеу

1 substrate

Figure 1 — Schematic of cross-section of test piece with different coating configurations

7.2 Test piece preparation

7.2.1 Test piece machining

The test pieces may be obtained from two approaches.

- a) The test pieces are cut from some coated components, carefully grinding and polishing the test piece to keep the surfaces parallel and flat.
- b) The test pieces are prepared by coating a substrate; in this case, the modulus of the substrate shall be measured before preparing coating.

The detail test procedure is described below.

Before applying the coating, mark each test piece substrate with a unique identifier which will be visible after coating. Measure the flatness of each uncoated test piece, for example, by mounting in an unstressed state on the x-y stage of a calibrated optical microscope and measuring the z coordinate of the surface with an accuracy of $\pm 2 \ \mu m$ at 10 equally spaced positions along its length. Record the results for each test piece.

For both single-face and two-face coating, carefully mask the faces to remain free from coating, ensuring that the masking material does not prevent the coating from completely covering the faces to be coated. Coat the test pieces using the processing conditions of interest, taking care to obtain the same coating thickness on all faces of interest. If necessary, coat an extra test piece using the same processing parameters and measure the coating thickness on this to determine coating uniformity prior to starting modulus and bending strength measurements. If the observed non-uniformity in coating thickness on different faces is greater than 5 % between the thickest and the thinnest values measured, new test piece should be prepared. Remove the masking from the uncoated faces and repeat the flatness measurement for each test piece and record the results.

ISO 19603:2016

7.2.2 Test piece handling and storage ai/catalog/standards/sist/1928b305-1d20-463f-84b6-

7128e141797b/iso-19603-2016

The test pieces shall be handled with care to avoid the introduction of damage after test piece preparation. The test pieces shall be stored separately and not allowed to impact or scratch each other.

7.2.3 Number of test pieces

A minimum of 6 test pieces are required for the test; the maximum load for fracture could be estimated by using the first test piece.

Minimum of 30 test pieces is recommended if a statistical bending strength analysis (e.g. a Weibull analysis) is to be made. The use of 30 test pieces will help obtain good confidence limits for the elastic modulus and bending strength distribution parameters including a Weibull modulus.

8 Test procedure

8.1 Testing machine and loading speed

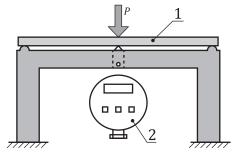
Use a universal mechanical testing machine with a crosshead speed of 0,5 mm/min for the three-point bending tests.

8.2 Elastic modulus measurement

The elastic modulus of the substrate should be known or should be measured using an uncoated sample.

The elastic modulus of a homogenous material can be calculated through the ratio of load increment, ΔP , to deflection increment, Δf , at the mid-span of a rectangular beam specimen in three-point bending.

$$E = \frac{L^3}{4H^3B \cdot 1\,000} \cdot \frac{\Delta P}{\Delta f}$$


where

- *E* is the elastic modulus, in GPa;
- *L* is the span of test pieces, in mm;
- *H* is the thickness of test pieces, in mm;
- *B* is the width of test pieces, in mm;
- ΔP is the load increment within the scope of elastic deformation of the substrate, in newtons (N);
- Δf is the equivalent deflection increment, in mm.

Mount the first test piece in the three-point bend apparatus, ensuring that any curvature detected after coating is concave on the side to which the bending load will be applied. Bring the loading head into contact with the test piece mid-way between the two mounting rollers, ensuring uniform contact between the pressure head and the test piece. Bring the probe of the deflection measuring device (electronic micrometer) into contact with the opposite side of the test piece and directly opposite the pressure head, ensuring a positive deflection reading is obtained; see Figure 2. Record this reading.

Apply a test load incrementally from 0,1 P_c to 0,5 P_c (or less, if necessary, to maintain the bending of the test piece in the elastic regime of the substrate) at the specified rate, recording the incremental deflection, with an accuracy of 0,001 mm or better, as a function of incremental load, measured with an accuracy of ±1 % or better. ISO 19603:2016

Calculate the elastic modulus of the coated test piece using Formula (1) and the equivalent incremental load and incremental deflection measurements.

Key

- 1 specimen
- 2 micrometer

Figure 2 — Schematic of measurement of load-deflection relation in three-point bending test

8.3 Bending strength measurement

To measure the bending strength of the coating, put each test piece in the fixture, as shown in Figure 2. Ensure uniform contact between the pressure head and the test piece. Apply the test force at the specified rate and record the peak load, *P*, during the fracture process. The bending strength of the ceramic coating can be calculated from the critical load and sample size. Measure the peak load with an accuracy of ±1 % or better. The acoustic emission technique is recommended to determine the critical

(1)