

SLOVENSKI STANDARD SIST ISO 1874-1:1996

01-junij-1996

Polimerni materiali - Poliamidni (PA) materiali za oblikovanje in ekstrudiranje - 1. del: Označevanje

Plastics -- Polyamide (PA) moulding and extrusion materials -- Part 1: Designation

Plastiques -- Matériaux polyamides (PA) pour moulage et extrusion -- Partie 1: Désignation (standards.iteh.ai)

Ta slovenski standard je istoveten Z: ISO 1874-1:1996 https://standards.iten.avcatalog/standards/sist/13015d49-0db6-4473-a434fa95da7a0c3e/sist-iso-1874-1-1996

ICS:

83.080.20 Plastomeri

Thermoplastic materials

SIST ISO 1874-1:1996

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 1874-1:1996</u> https://standards.iteh.ai/catalog/standards/sist/f30f5d49-0db6-4473-a434fa95da7a0c3e/sist-iso-1874-1-1996

INTERNATIONAL STANDARD

ISO 1874-1

Second edition 1992-03-01

Corrected and reprinted 1992-12-01

Plastics — Polyamide (PA) moulding and extrusion materials —

Part 1:

iTeh Spesignation PREVIEW

(standards.iteh.ai)

Plastiques — Matériaux polyamides (PA) pour moulage et extrusion — SIST ISO 1874-1:1996 Partie 1: Désignation https://standards.iten.avcatalog/standards/sist/f30f5d49-0db6-4473-a434fa95da7a0c3e/sist-iso-1874-1-1996

Reference number ISO 1874-1:1992(E)

SIST ISO 1874-1:1996

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member VIEW bodies casting a vote.

International Standard ISO 1874-1 was prepared by Technical Committee ISO/TC 61, *Plastics*, Sub-Committee SC 9, *Thermoplastic materials*.

SIST ISO 1874-1:1996 This second edition cancels/stand ds replaces/ogthedaftrstst/fedition-0db6-4473-a434-(ISO 1874-1:1985), the scope of which has been extended to include not only homopolymers but also copolymers.

ISO 1874 consists of the following parts, under the general title *Plastics — Polyamide (PA) moulding and extrusion materials:*

- Part 1: Designation
- Part 2: Preparation of test specimens and determination of properties

Annex A forms an integral part of this part of ISO 1874.

International Organization for Standardization

Printed in Switzerland

[©] ISO 1992

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Plastics — Polyamide (PA) moulding and extrusion materials —

Part 1: Designation

1 Scope

1.1 This part of ISO 1874 establishes a system of designation for polyamide (PA) thermoplastic materials, which may be used as the basis for specifications.

It covers polyamide homopolymers for moulding and extrusion based on PA 6, PA 66, PA 69, PA 610, PA 612, PA 11, PA 12, PA MXD6, PA 46, PA 1212 and copolyamides of various compositions for moulding and extrusion.

<u>SIST ISO 1874-1:1996</u>

https://standards.iteh.ai/catalog/standards/sist/f30f5d49-0db6-4473-a434-**1.2** The types of polyamide plastic are differentiated from each other by a classification system based on appropriate levels of the designatory properties

a) viscosity number,

b) tensile modulus of elasticity and

c) presence of nucleating agent,

and on information about chemical structure, intended application, method of processing, important properties, additives, colour, fillers and reinforcing materials.

1.3 The designation system is applicable to all polyamide homopolymers and copolymers. Its applies to materials ready for normal use, unmodified and modified by colorants, additives, fillers, reinforcing materials, polymer modifiers, etc.

This part of ISO 1874 does not apply to monomer casting-type polyamides of PA 6 and PA 12.

1.4 It is not intended to imply that materials having the same designation give necessarily the same performance. This part of ISO 1874 does not provide engineering data, performance data or data on processing conditions which may be required to specify a material for a particular application and/or method of processing.

If such additional properties are required, they shall be determined in accordance with the test methods specified in part 2 of ISO 1874, if suitable.

1.5 In order to specify a thermoplastic material for a particular application or reproducible processing, additional requirements may be given in Data Block 5 (see clause 3).

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 1874. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 1874 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 307:1984, Plastics – Polyamides – Determination of viscosity number.

ISO/R 527:1966, Plastics – Determination of tensile properties.

ISO 1043-1:1987, Plastics — Symbols — Part 1: Basic polymers and their special characteristics.

ISO 1043-2:1988, Plastics — Symbols — Part 2: Fillers and reinforcing materials.

ISO 1874-2:1987, Plastics — Polyamide (PA) moulding and extrusion materials — Part 2: Preparation of test specimens and determination of properties.

ISO 3451-4:1986, Plastics — Determination of ash — Part 4: Polyamides.

3 Designation system

The designation system for thermoplastics is based on the standardized pattern given in figure 1.

The designation consists of an optional Oescription Block, reading "Thermoplastics", and an Identity Block comprising the International Standard number and an Individual Item Block. For unambiguous designation, the Individual Item Block is subdivided into four data blocks comprising the following information:

Data Block 1: Identification of the plastic by its symbol (PA), in accordance with ISO 1043-1, and information about chemical structure and composition (see 3.1).

Data Block 2: Position 1: Intended application or method of processing (see 3.2).

Positions 2 to 8: Important properties, additives and supplementary information (see 3.2).

Data Block 3: Designatory properties (see 3.3).

Data Block 4: Fillers or reinforcing materials and their nominal content (see 3.4).

For the purpose of specifications, a fifth data block may be added containing additional information. The kind of information and the code-letters used are not the subject of this part of ISO 1874.

The first character of the Individual Item Block shall be a hyphen.

The four data blocks shall be separated from each other by a comma.

If a data block is not used, this shall be indicated by doubling the separation sign, i.e. by two commas (..).

3.1 Data Block 1

In this data block, after the hyphen, the polyamide plastic is identified using the symbols and designations listed in tables 1 and 2.

Polyamides containing a plasticizer may be designated by adding the letter P after the symbol, separated from it by a hyphen (example: PA 610-P).

Polyamides containing an impact modifier may be designated by adding the letters HI after the symbol, separated from it by a hyphen (example: PA6-HI).

		Designation				
		lder	ntity Block			
Description Block			individual ii	tem Block		
(optional)	International Standard Block	Data Block 1	Data Block 2	Data Block 3	Data Block 4	Data Block 5

Figure	1		Data	block	designation	system
--------	---	--	------	-------	-------------	--------

Table 1 - Symbols indicating the chemical structure of polyamide materials in Data Block 1

Symbol	Name and chemical structure Polyamide 6; homopolymer based on ε-caprolactam			
PA 6				
PA 66	Polyamide 66; homopolycondensate based on hexamethylenediamine and adipic acid			
PA 69	Polyamide 69; homopolycondensate based on hexamethylenediamine and azelaic acid			
PA 610	Polyamide 610; homopolycondensate based on hexamethylenediamine and sebacic acid			
PA 612	Polyamide 612; homopolycondensate based on hexamethylenediamine and and dodecanedioic acid ¹⁾			
PA 11	Polyamide 11, homopolymer based on 11-aminoundecanoic acid			
PA 12	Polyamide 12; homopolymer based on <i>w</i> -aminododecanoic acid or on laurolactam			
PA MXD6	Polyamide MXD6; homopolycondensate based on <i>m</i> -xylylenediamine and adipic acid			
PA 46	Polyamide 46; homopolymer based on tetramethylenediamine and adipic acid			
PA 1212	Polyamide 1212, homopolymer based on dodecanediamine and dodecanedioic acid ¹)			

Table 2 — Symbols indicating the chemical structure of copolyamide materials in Data Block 1 (examples)

Symbol	Chemical structure			
PA 66/610	Polyamide copolymers based on hexamethylenediamine, adipic acid and sebacic acid			
PA 6/12	Polyamide copolymers based on <i>ε</i> -caprolactam and laurolactam			
PA 6T/6I	Polyamide copolymers based on hexamethylenediamine, terephthalic acid and isophthalic acid			
PA 6/66/PACM 6	Polyamide ternary copolymers of <i>e</i> -caprolactam, hexamethylenediamine, adipic acid, bis(<i>p</i> -aminocyclohexyl)methane and adipic acid			
PA 12/IPDI	Polyamide copolymers of laurolactam, isophorone diamine and isophthalic acid			
The following two	designations include an indication of the mass content ratio:			
PA 66/6 (90/10)	Polyamide copolymers based on 90 % (m/m) hexamethylenediamine and adipic acid and 10 % (m/m) ε -caprolactam			
PA 66/6 (20/80)	Polyamide copolymers based on 20 % (m/m) hexamethylenediamine and adipic acid and 80 % (m/m) ε -caprolactam			

3.2 Data Block 2

In this data block, information about intended application or method of processing is given in position 1 and information about important properties, additives and colour in positions 2 to 8. The code-letters are specified in table 3.

If information is presented in positions 2 to 8 and no specific information is given in position 1, the letter X shall be inserted in position 1.

Code- letter	Position 1	Positions 2 to 8
A		Processing stabilized
B	Blow moulding	Antiblocking
C1		Coloured, transparent
C2		Coloured, non-transparent
D		Powder; dry blend
D E	Extrusion of pipes, profiles and sheets	Expandable
F	Extrusion of film and thin sheeting	Special burning characteristics
G	General use	Pellets; granules
н	Coating	Heat-ageing stabilized
К	Cable and wire coating	
L	Monofilament extrusion	Light and/or weather stabilized
М	Injection moulding	
Ν	,	Natural (not coloured)
R	Rotational moulding	Moulding release agent
S	Powder coating or sinteringeh STANDAR	Lubricated H, VIII, V
т	Tana manufactura	Improved transparency
Ŵ	(standarde	Stabilized against hydrolysis
X	No indication	pitteniai)
z		Antistatic
	SISTISO 187	4 1.1006

Table 3 — Codes used in Data Block 2

https://standards.iteh.ai/catalog/standards/sist/f30f5d49-0db6-4473-a434fa95da7a0c3e/sist-iso-1874-1-1996

3.3 Data Block 3

In this data block, the viscosity number is represented by a two-figure code-number (see 3.3.1) and the tensile modulus of elasticity by a three-figure code-number (see 3.3.2). The two codes are separated from each other by a hyphen.

Nucleated polyamides may be designated by the letter N in the very last position of Data Block 3.

If a property value falls on or near a range limit, the manufacturer shall state which range will designate the material. If subsequent individual test values lie on, or either side of, the range limit because of manufacturing tolerances, the designation is not affected.

NOTE 1 Not all combinations of the values of the designatory properties are provided by currently available materials.

3.3.1 Viscosity number

The viscosity number shall be determined in accordance with ISO 307, using the solvent specified in table 4. The average value of the viscosity number is represented by a two-figure code-number as specified in table 4.

For copolyamides, 96 % (m/m) sulfuric acid should preferably be used as solvent, but some copolyamides dissolve better in *m*-cresol. Information concerning the most suitable solvent can be obtained from the supplier of copolyamides and homopolyamides which are not covered by the last column of table 4.

Code-number	Range of viscos ml/g	Applicable to	
	Solvent: 96 % (<i>m/m</i>) sulfuric acid	Solvent: <i>m</i> -cresol	
09 10 12 14 18 22	<pre> < 90 > 90 to 110 > 110 to 130 > 130 to 160 > 160 to 200 > 200 to 240 </pre>		PA 6 PA 66 PA 69 PA 610 PA 612 PA MXD6
27 32 34	> 240 to 290 > 290 to 340 > 340		Copolyamides
11 12 14		≤110 > 110 to 130 > 130 to 150	PA 1212 PA 11 PA 12
16 18 22 24		> 150 to 170 > 170 to 200 > 200 to 240 > 240	Copolyamides

Table 4 — Code-numbers used for viscosity number in Data Block 3

NOTE 2 Viscosity numbers determined with 90 % (m/m) formic acid as solvent can be converted into viscosity numbers determined in 96 % (m/m) sulfuric acid using the following equations:

```
For PA 6
```

(standards.iteh.ai)

 $\ln y = 0,416 \ 1 + 0,927 \ 6 \ \ln x$

SIST ISO 1874-1:1996

For PA 66 https://standards.iteh.ai/catalog/standards/sist/f30f5d49-0db6-4473-a434-In y = 0,454 1 + 0,926 1 In x fa95da7a0c3e/sist-iso-1874-1-1996

For PA 69

 $\ln y = 0,463 4 + 0,909 5 \ln x$

For PA 610

 $\ln y = 0.982 \ 3 + 0.793 \ 2 \ln x$

where

x is the viscosity number in 90 % (m/m) formic acid;

y is the viscosity number in 96 % (m/m) sulfuric acid.

For the viscosity number of PA 612, which may be determined in accordance with ISO 307 in either *m*-cresol or 96 % (m/m) sulfuric acid, the following conversion formula applies:

 $\ln y = 0.285 7 + 0.985 9 \ln x$

where

x is the viscosity number in 96 % (m/m) sulfuric acid;

y is the viscosity number in *m*-cresol.

The above conversion formulae have been calculated from the results of an interlaboratory investigation carried out in 1982 (see ISO 307:1984, clause 13). The accuracy of the conversions depends on both the size of the viscosity number and the type of PA, the latter resulting from the fact that different numbers of the different PA-types were included in the investigation. The 95 % confidence intervals for the values of the nominal viscosity number in 96 % (m/m) sulfuric acid, converted from different values of the nominal viscosity number in the other solvent, are given in table 5.