

SLOVENSKI STANDARD oSIST prEN IEC 62305-2:2023

01-oktober-2023

Zaščita pred delovanjem strele - 2. del: Vodenje rizika

Protection against lightning - Part 2: Risk management

Blitzschutz - Teil 2: Risiko-Management

iTeh STANDARD PREVIEW

Protection contre la foudre - Partie 2: Evaluation des risques

Ta slovenski standard je istoveten z: prEN IEC 62305-2:2023

https://standards.iteh.ai/catalog/standards/sist/40fd317f-fb43-472d-943d-

4fbb33ff7a74/osist-pren-iec-62305-2-2023

en

ICS:

91.120.40 Zaščita pred strelo

Lightning protection

oSIST prEN IEC 62305-2:2023

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN IEC 62305-2:2023 https://standards.iteh.ai/catalog/standards/sist/40fd317f-fb43-472d-943d-4fbb33ff7a74/osist-pren-iec-62305-2-2023

81/731/CDV

COMMITTEE DRAFT FOR VOTE (CDV)

PROJECT NUMBER:	
IEC 62305-2 ED3	
DATE OF CIRCULATION:	CLOSING DATE FOR VOTING:
2023-07-21	2023-10-13
SUPERSEDES DOCUMENTS:	
81/687/CDV, 81/712A/RVC	

EC TC 81 : LIGHTNING PROTECTION		
Secretariat:	SECRETARY:	
Italy	Mrs Marina Bernardi	
OF INTEREST TO THE FOLLOWING COMMITTEES:	PROPOSED HORIZONTAL STANDARD:	
SC 37A,TC 64,TC 88		
	Other TC/SCs are requested to indicate their interest, if any, in this CDV to the secretary.	
FUNCTIONS CONCERNED:		
	QUALITY ASSURANCE SAFETY	
SUBMITTED FOR CENELEC PARALLEL VOTING	NOT SUBMITTED FOR CENELEC PARALLEL VOTING	
Attention IEC-CENELEC parallel voting	Not SUBMITTED FOR CENELEC PARALLEL VOTING	
Attention IEC-CENELEC parallel voting The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this Committee Draft for Vote (CDV) is submitted for parallel voting.	Not SUBMITTED FOR CENELEC PARALLEL VOTING	

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Recipients of this document are invited to submit, with their comments, notification of any relevant "In Some Countries" clauses to be included should this proposal proceed. Recipients are reminded that the CDV stage is the final stage for submitting ISC clauses. (SEE AC/22/2007 OR NEW GUIDANCE DOC).

TITLE:

Protection against lightning - Part 2: Risk management

PROPOSED STABILITY DATE: 2028

NOTE FROM TC/SC OFFICERS:

Copyright © 2023 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.

1

CONTENTS

2				
3	FC	REWO	RD	7
4	IN	TRODU	CTION	9
5	1	Scop	e	
6	2	Norm	ative references	11
7	2 3	Term	s and definitions	11
0	1	Symt	val and appreviations	10
0	4 5	Dom		
9	5	Dama		23
10		5.1 5.2	Source of damage	23
12		53	Type of loss	23
13	6	Risk	and risk components	20
14	•	6 1	Risk	24
15		6.2	Risk components.	24
16		6.2.1	Risk components for a structure due to source S1	25
17		6.2.2	Risk component for a structure due to source S2	25
18		6.2.3	Risk components for a structure due to source S3	25
19		6.2.4	Risk component for a structure due to source S4	25
20		6.2.5	Factors affecting risk components for a structure	25
21		6.3	Composition of risk components	26
22		6.3.1	Composition of risk components according to source of damage	26
23	_	6.3.2	Composition of risk components according to type of loss	27
24	1	Risk	assessment (and the 33 ff 7a 74 /osist preprint 62305-2-2023	28
25		7.1	Basic procedure	28
26		7.2	Structure to be considered for risk assessment	28
27	Q	1.3	Procedure to evaluate the need of protection for risk R	28
20	0	A330		
29		0.1 0.2	Assessment of risk components due to different sources of damage	31
30		0.Z 8 3	Partitioning of a structure in risk zones 7S	
32		8.4	Partitioning of a line into sections SL	
33		8.5	Assessment of risk components in a zone of a structure with risk zones ZS	
34		8.5.1	General criteria	34
35		8.5.2	Single-zoned structure	34
36		8.5.3	Multi-zoned structure	35
37	9	Frequ	uency of damage and its components	35
38		9.1	Frequency of damage	35
39		9.2	Assessment of partial frequency of damage	35
40		9.3	Procedure to evaluate the need of protection for frequency of damage F	36
41		9.4	Assessment of partial frequency of damage	39
42		9.4.1	General criteria	39
43		9.4.2	Single-zonea structure	
44	۸n	9.4.3	informative) Assessment of annual number N of dangerous events	39
40			Conorol	40
46		A. I	General	40

IEC CDV 62305-2 © IEC 2023

oSIST prEN IEC 62305-2:2023

47 48	A.2	Assessment of the average annual number of dangerous events ND due to flashes to a structure and ND.I to an adjacent structure	41
40	A 2 ·	1 Determination of the collection area AD	41
50	A 2 2	2 Structure as a part of a building	43
51	A.2.3	Relative location of the structure	
52	A.2.4	1 Number of dangerous events ND for the structure	45
53	A.2.	5 Number of dangerous events NDJ for an adjacent structure	
54	A.3	Assessment of the average annual number of dangerous events NM due to	
55		flashes near a structure	45
56 57	A.4	Assessment of the average annual number of dangerous events NL due to flashes to a line	46
58 59	A.5	Assessment of average annual number of dangerous events NI due to flashes near a line	47
60	A.6	Representation of the equivalent collection areas	48
61	Annex B	(informative) Assessment of probability PX of damage	49
62	B.1	General	49
63 64	B.2	Probability PAT that a flash to a structure will cause dangerous touch and step voltage	50
65 66	B.3	Probability PAD that a flash will cause damage to an exposed person on the structure.	51
67 68	B.4	Probability PB that a flash to a structure will cause physical damage by fire or explosion	52
69 70	B.5	Probability PC that a flash to a structure will cause failure of internal systems	54
71 72	B.6	Probability PM that a flash near a structure will cause failure of internal systems	59
73	B.7	Probability PU that a flash to a line will cause damage due to touch voltage	61
74	B.8	Probability PV that a flash to a line will cause physical damage by fire or	
75		explosion 4fbb33ff7a74/osist-pren-iec-623ff5-2-2023	63
76	B.9	Probability PW that a flash to a line will cause failure of internal systems	64
77 78	B.10	Probability PZ that a lightning flash near an incoming line will cause failure of internal systems	65
79	B.11	Probability PP that a person will be in a dangerous place	65
80	B.12	Probability Pe that an equipment will be exposed to a damaging event	65
81	Annex C	(informative) Assessment of loss LX	66
82	C.1	General	66
83	C.2	Mean relative loss per dangerous event	66
84	Annex D	(informative) PSPD Evaluation	69
85	D.1	Introduction	69
86	D.2	PQ values	69
87	D.2.	1 Probability values of both the negative and positive first strokes	69
88	D.2.2	2 Source of damage S1	70
89	D.2.3	3 Source of damage S3	70
90	D.2.4	4 Sources of damage S2 and S4	71
91	D.3	SPD protection level	71
92	D.3.	1 Source of damage S1	71
93	D.3.	2 Source of damage S3	75
94 95	D.3.3	3 Energy coordinated SPDs: One voltage switching SPD and one voltage limiting SPD downstream	80
96	D.4	Source of damage S4	83
97	D.4.	0 One voltage limiting SPD	83

98	D.4.2	One voltage switching SPD	83
99	D.5	Source of damage S2	84
100	Annex E (i	nformative) Detailed investigation of additional losses LE related to	
101	surrou	undings	85
102	E.1	General	85
103	E.2	Calculation of risk components	
104	Annex F (i	nformative) Case study	
105	F.1	General	89
106	F.2	House	
107	F.2.1	Relevant data and characteristics	
108	F.2.2	Calculation of expected annual number of dangerous events	92
109	F.2.3	Risk management	93
110	F.2.4	Definition of risk zones in the House	
111	F.2.5	Risk assessment	95
112	F.2.6	Risk – Selection of protection measures	96
113	F.Z./		96
114	F.3 E 2 1	Once building	97
115	F.J.I E 2 2	Calculation of expected appual number of dangerous events	97 09
110	F.J.Z E 3 3	Pick management	90 00
118	F 3 4	Definition of zones in the office building	100
110	F 3 5	Risk assessment	100
120	F 3 6	Frequency of damage assessment	106
121	F.3.7	Risk – Selection of protection measures	106
122	F.3.8	Frequency of damage – Selection of protection measures	107
123	F.3.9	http Conclusions itch.ai/catalog/standards/sist/40fd317f-fb43-472d-943d-	108
124	F.4	Hospital	109
125	F.4.1	Relevant data and characteristics	109
126	F.4.2	Calculation of expected annual number of dangerous events	110
127	F.4.3	Risk management	111
128	F.4.4	Definition of zones in the hospital	111
129	F.4.5	Risk assessment	117
130	F.4.6	Frequency of damage assessment	118
131	F.4.7	Risk – Selection of protection measures	118
132	F.4.8	Frequency of damage – Selection of protection measures	120
133	F.4.9	Conclusions	121
134	Bibliograp	hy	122
135			
136 137	Figure 1 – protection	Procedure for deciding the need for protection and for the selection of measures to reduce R \leq RT	30
138	Figure 2 –	Example of zone partitioning	33
139 140	Figure 3 – protection	Procedure for determining the need for protection and for the selection of measures	
141	Figure A.1	- Collection area AD of an isolated structure	41
142	Figure A 2	- Complex-shaped structure	
143	Figure A 3	- Different methods to determine the collection area for a given structure	<u>م</u> ر
144	Figure A 4	- Structure to be considered for evaluation of collection area AD	0ד ۱۸
144		- Structure to be considered for evaluation of collection area AD	
145	Figure A.5	- Equivalent collection areas AD, ADJ, AM, AL and Al	48

81/731/CDV

146	Figure D.1 – Charge probability of both negative and positive first strokes	70
147	Figure D.2 – Probability PUp as function of the SPD residual voltage U'p at 1 kA	72
148	Figure D.3 – Probability PUp as function of k1i	73
149	Figure D.4 – Probability PUp as function of the SPD2 residual voltage U'p at 1 kA	74
150	Figure D.5 – Probability PUp as function of the SPD2 residual voltage U'p at 1 kA	75
151	Figure D.6 – Probability PUp as function of the residual voltage at 1 kA (Up')	76
152	Figure D.7 – Probability PUp as function of different lengths of the internal circuit	77
153	Figure D.8 – Probability PUp as function of different lengths of the internal circuit	78
154	Figure D.9 – Probability PUp as a function of the SPD2 residual voltage U'p at 1 kA	80
155	Figure D.10 – Probability PUp as a function of the internal loop area	81
156	Figure D.11 – Probability PUp as a function of the internal loop area	82
157	Figure D.12 – Probability PUp as a function of the internal loop area	82
158 159	Figure D.13 – Probability PUp as a function of the SPD protection level U'p at 1 kA for different internal loop area	83
160 161	Figure D.14 – Probability PUp as a function of different internal loop area for two typical protection levels of GDTs	84
162	Table 4. Courses of demonstrate of demonstrate files and visk commences	
163 164	according to the point of strike	24
165	Table 2 – Factors influencing the risk components	26
166	Table 3 – Risk components for different source of damage and type of loss	32
167	Table 4 – Partial frequency of damage for each source of damage	36
168	Table A.1 – Structure location factor CD and CDJ	45
169	Table A.2 – Line installation factor Cl	47
170	Table A.3 – Line type factor CT	47
171	Table A.4 – Environmental factor CE	47
172 173	Table B.1 – Values of probability Pam that a flash to a structure will cause damage due to touch and step voltages according to different protection measures	50
174	Table B.2 – Reduction factor rt as a function of the type of surface of soil or floor	51
175 176 177	Table B.3 – Values of probability PLPS depending on the protection measures to protect the exposed areas of the structure against the direct flash and to reduce physical damage	52
178 179	Table B.4 – Values of probability Ps that a flash to a structure will cause dangerous sparking	53
180 181	Table B.5 – Reduction factor rp as a function of provisions taken to reduce the consequences of fire	53
182	Table B.6 – Reduction factor rf as a function of risk of fire or explosion of structure	54
183 184	Table B.7 – Typical values of PSPD for SPDs on the low-voltage system, used to protect against sources of damage S1, S2, S3, S4	56
185 186	Table B.8 – Typical values of PSPD for SPDs on the telecommunications system usedto protect against sources of damage S1, S2, S3, S4	57
187 188	Table B.9 – Values of factors CLD and CLI depending on shielding, grounding and isolation conditions	59
189	Table B.10 – Value of factor KS3 depending on internal wiring	61
190 191	Table B.11 – Values of the probability PLD depending on the resistance RS of the cable screen and the impulse withstand voltage UW of the equipment	62

192 193	Table B.12 – Values of the probability PLD depending on the resistance RS of the cable screen and the higher impulse withstand voltage UW of the equipment	63
194 195	Table B.13 - Typical values of probability PEB relevant to protection level LPL for which the SPD is designed to protect against source of damage S3	63
196	Table C.1 – Loss values for each zone	67
197	Table C.2 - Typical mean values of LT, LD, LF1, LF2, LO1 and LO2	68
198 199	Table D.1 – PUp values of the voltage limiting SPD for combination between a voltage limiting and a voltage switching SPD	73
200	Table D.2 – PUp values of the voltage limiting SPD	79
201 202	Table E.1 – Risk components for different source of damage and type of loss, valid for damage to the surroundings	86
203 204	Table E.2 - Type of loss L1: Proposed typical values for the related time of presence for people tzE / 8 760 in different environments as limited by Table E.3	87
205 206	Table E.3 - Type of loss L1: Typical mean values of LF1E and LO1E outside the structure	88
207 208	Table E.4 - Type of loss L2 - Typical mean values of LF2E and LO2E outside the structure	88
209	Table F.1 – House: Environment and structure characteristics	90
210	Table F.2 – House: Power line	91
211	Table F.3 – House: Telecom line	92
212	Table F.4 – House: Equivalent collection areas of structure and lines	92
213	Table F.5 – House: Expected annual number of dangerous events	93
214	Table F.6 – House: Time of presence of persons and risk components into risk zones	94
215	Table F.7 – House: values for zone Z2 (inside the building)	95
216	Table F.8 – House: Risk for the unprotected structure (values × 10–5)	96
217	Table F.9 – House: Risk components for protected structure (values \times 10–5)	96
218	Table F.10 – Office building: Environment and structure characteristics	97
219	Table F.11 – Office building: Power line	98
220	Table F.12 – Office building: Telecom line	98
221	Table F.13 – Office building: Collection areas of structure and lines	99
222	Table F.14 – Office building: Expected annual number of dangerous events	99
223 224	Table F.15 – Office building: Time of presence of persons and risk components into zones	100
225	Table F.16 – Office building: Factors valid for zone Z1 (entrance area outside)	101
226	Table F.17 – Office building: Factors valid for zone Z2 (roof)	102
227	Table F.18 – Office building: Factors valid for zone Z3 (archive)	103
228	Table F.19 – Office building: Factors valid for zone Z4 (offices)	104
229	Table F.20 – Office building: Factors valid for zone Z5 (computer centre)	105
230	Table F.21 – Office building: Risk for the unprotected structure (values \times 10–5)	106
231	Table F.22 – Office building: Frequency of damage for the unprotected structure	106
232	Table F.23 – Risk components for protected structure (values \times 10–5)	107
233	Table F.24 – Office building: Frequency of damage for protected structure	108
234	Table F.25 – Hospital: Environment and structure characteristics	109
235	Table F.26 – Hospital: Power line	110
236	Table F.27 – Hospital: Collection areas of structure and power line	111

237	Table F.28 – Hospital: Expected annual number of dangerous events	111
238	Table F.29 – Hospital: Time of presence of persons and risk components into zones	113
239	Table F.30 – Hospital: Factors valid for zone Z1 (outside the building)	113
240	Table F.31 – Hospital: Factors valid for zone Z2 (roof)	114
241	Table F.32 – Hospital: Factors valid for zone Z3 (rooms)	115
242	Table F.33 – Hospital: Factors valid for zone Z4 (operating block)	116
243	Table F.34 – Hospital: Factors valid for zone Z5 (intensive care unit)	117
244	Table F.35 – Hospital: Risk for the unprotected structure (values \times 10–5)	118
245	Table F.36 – Hospital: Frequency of damage for the unprotected structure	118
246	Table F.37 – Hospital: Risk for the protected structure (values \times 10–5)	120
247	Table F.38 – Hospital: Frequency of damage for the protected structure	120
248		

249

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN IEC 62305-2:2023 https://standards.iteh.ai/catalog/standards/sist/40fd317f-fb43-472d-943d-4fbb33ff7a74/osist-pren-iec-62305-2-2023

250		INTERNATIONAL ELECTROTECHNICAL COMMISSION
251		
252 253		PROTECTION AGAINST LIGHTNING
254 255		Part 2: Risk management
256 257 258		FOREWORD
259 260 261 262 263 264 265 266 267	1)	The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
268 269 270	2)	The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
271 272 273 274	3)	IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
275 276 277	4)	In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
278 279 280	5)	IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
281	6)	All users should ensure that they have the latest edition of this publication. ()23
282 283 284 285 286	7)	No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
287 288	8)	Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
289 290	9)	Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
291 292	IE Int	C 62305-2 has been prepared by IEC technical committee 81: Lightning protection. It is an ternational Standard.
293 294	Th co	is third edition cancels and replaces the second edition, published in 2010. This edition nstitutes a technical revision.
295 296	This edition includes the following significant technical changes with respect to the previous edition:	
297 298	a)	The concept of a single risk, to combine loss of human life and loss due to fire, has been introduced.
299 300	b)	The concept of frequency of damage that may impair the availability of the internal systems within the structure has been introduced.
301 302 303	c)	The lightning ground strike-point density N_{SG} has been introduced replacing the lightning flash density N_{G} in the evaluation of expected average annual number of dangerous events.

- d) Risk components reduction by the use of preventive temporary measures activated by
 means of a thunderstorm warning system (TWS) compliant with IEC 62793. The risk of
 direct strike to people at open areas is introduced in this edition, considering the reduction
 of that risk using TWS.
- 308 The text of this International Standard is based on the following documents:

Draft	Report on voting
XX/XX/FDIS	XX/XX/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- 320 reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended. <u>oSIST prEN IEC 62305-2:2023</u>
- https://standards.iteh.ai/catalog/standards/sist/40fd317f-fb43-472d-943d-

033ff7a74/osist-pren-1ec-62305-2-2

In Germany, value of $r_p = 1$ for all cases. For the risk components R_B , R_C , R_M , R_V , R_W and $R_Z P_{TWS} = 1$ is assumed. The following values both for L_{F1} and L_{F2} are used: 0,1 / 0,05 / 0,02 / 0,01.

In the USA, the ground flash density values from the National Lightning Detection Network map shall be used in the calculation of the number of dangerous events until the safety factors in the values of P_x and L_x are reduced accordingly.

10

IEC CDV 62305-2 © IEC 2023

330	INTRODUCTION
331	
332	Lightning flashes to earth may be hazardous to structures and to lines supplying the structure.
333	These hazards can result in:
334	 damage to the structure and to its contents,
335	 failure of associated electrical and electronic systems,
336	 injury to living beings in or close to the structure.
337 338 339 340	Consequential effects of the damage and failures may be extended to the surroundings of the structure or may involve its environment. Moreover, regardless of the amount of loss, the availability of the structure and its internal systems may be unacceptably impaired if the frequency of damage is high.
341 342 343	To reduce the frequency of damage and the loss due to lightning, protection measures may be required. Whether they are needed, and to what extent, should be determined by frequency of damage and risk assessment.
344 345	NOTE 1 The decision to provide lightning protection may be taken regardless of the outcome of frequency of damage or risk assessment where there is a desire that there be no avoidable damages.
346	NOTE 2 IEC 60364-4-44 always requires installation of SPD at power line entrance in the structure when the
347 348	consequence caused by overvoltages affects:
349	 public services and cultural heritage, e.g. loss of public services. IT centres, museums.
350	 commercial or industrial activity, e.g. hotels, banks, industries, commercial markets, farms.
351 352	The frequency of damage, defined in this part of IEC 62305 as the annual number of damages in a structure due to lightning flashes, depends on:
353	 the annual number of lightning flashes influencing the structure; 3
354	 the probability of damaging events by one of the influencing lightning flashes.
355 356	The risk, defined in this part of IEC 62305 as the probable average annual loss in a structure due to lightning flashes, depends on:
357	 the frequency of damage;
358	 the mean amount of consequential loss.
359	Lightning flashes influencing the structure may be divided into
360	 flashes terminating on the structure,
361 362	 flashes terminating near the structure, direct to connected lines (power, telecom- munication lines,) or near the lines.
363 364 365 366	Flashes to the structure or a connected line may cause physical damage and life hazards. Flashes near the structure or line as well as flashes to the structure or line may cause failure of electrical and electronic systems due to overvoltages resulting from resistive and inductive coupling of these systems with the lightning current.
367 368	Moreover, failures caused by lightning overvoltages in users' installations and in power supply lines may also generate voltage switching overvoltages in the installations.

NOTE 3 Malfunctioning of electrical and electronic systems is not covered by the IEC 62305 series. Reference should be made to IEC 61 000-4-5 ^[1].

¹ Figures in square brackets refer to the bibliography.

The number of lightning flashes influencing the structure depends on the dimensions and the characteristics of the structure and of the connected lines, on the environmental characteristics of the structure and the lines, as well as on lightning ground strike-point density in the region where the structure and the lines are located. Guidance on the assessment of number of lightning flashes influencing the structure is given in the informative Annex A.

The probability of damage depends on the structure, the connected lines, and the lightning current characteristics, as well as on the type and efficiency of applied protection measures. Guidance on the assessment of probability of damage is given in the informative Annex B.

The annual mean amount of the consequential loss depends on the extent of damage and the consequential effects which may occur as result of a lightning flash. Guidance on the assessment of consequential loss is given in the informative Annex C.

The effect of protection measures results from the characteristics of each protection measure and may reduce the damage probabilities.

NOTE 4 It has to be ensured, that the protective provisions are realized certainly in the necessary quality and the protection measures are complying with standards IEC 62305-3, IEC 62305-4, IEC 62561 and IEC 62793, as applicable.

NOTE 5 For complex structures (such as petrochemical plants, large industrial plants, etc.) the factors reported in
 the Annexes of this standard may require more detailed evaluation of the characteristics of the structure.

389

iTeh STANDARD PREVIEW (standards.iteh.ai)

oSIST prEN IEC 62305-2:2023 https://standards.iteh.ai/catalog/standards/sist/40fd317f-fb43-472d-943d-4fbb33ff7a74/osist-pren-iec-62305-2-2023

390	PROTECTION AGAINST LIGHTNING –
391	
392	Part 2: Risk management
393	
394	
395	
396	Scope

This part of IEC 62305 is applicable to risk management of a structure due to lightning flashes to earth.

Its purpose is to provide a procedure for the evaluation of such a risk. Once an upper tolerable
 limit for the risk has been selected, this procedure allows the selection of appropriate protection
 measures to be adopted to reduce the risk to or below the tolerable limit.

Risk management also includes the evaluation of frequency of damage of internal systems caused by surges due to lightning flashes to earth. Once an upper tolerable limit for the frequency of damage has been selected, this procedure allows the selection of appropriate protection measures to be adopted to reduce the frequency of damage to or below the tolerable limit.

407 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

- 412 IEC 62305-1, Protection against lightning Part 1: General principles
- IEC 62305-3, Protection against lightning Part 3: Physical damage to structures and life
 hazard
- 415 IEC 62305-4, Protection against lightning Part 4: Electrical and electronic systems within 416 structures
- 417 IEC 62793, Protection against lightning Thunderstorm warning systems
- 418 IEC 62858, Lightning density based on lightning location systems (LLS) General principles
- IEC 60364-4-44, Low-voltage electrical installations Part 4-44: Protection for safety –
 Protection against voltage disturbances and electromagnetic disturbances
- 421 IEC 61643 series of standard

422 **Terms and definitions**

- 423 For the purposes of this document, the following terms and definitions apply.
- ISO and IEC maintain terminological databases for use in standardization at the followingaddresses:
- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

- 429 3.1 430 structure to be protected structure for which protection is required against the effects of lightning in accordance with 431 this standard 432 433 Note 1 to entry: A structure to be protected may be part of a larger structure. 3.2 434 structures with risk of explosion 435 structures containing solid explosives materials or hazardous zones as determined in 436 accordance with IEC 60079-10-1 ^[2] and IEC 60079-10-2 ^[3] 437 3.3 438 439 structures dangerous to the environment structures which may cause biological, chemical or radioactive emission as a consequence of 440 lightning (such as chemical, petrochemical plants) 441 3.4 442 443 urban environment area with a high density of buildings or densely populated communities with tall buildings 444 Note 1 to entry: 'Town centre' is an example of an urban environment. 445 3.5 446 suburban environment 447 448 area with a medium density of buildings Note 1 to entry: 'Town outskirts and residential communities' are examples of a suburban environment. 449 450 3.6 rural environment 451 area with a low density of buildings 452 Note 1 to entry: 'Countryside' is an example of a rural environment. 453 454 3.7 rated impulse withstand voltage U_{W} 455 impulse withstand voltage value assigned by the manufacturer to the equipment or to a part of 456 it, characterizing the specified withstand capability of its insulation against overvoltages. 457 [IEC 60664-1:2007, definition 3.9.2, modified] [4] 458 459 Note 1 to entry: For the purposes of this part of IEC 62305, only the withstand voltage between live conductors and 460 earth is considered. 3.8 461 electrical system 462 463 system incorporating low voltage power supply components 3.9 464 electronic system 465 system incorporating sensitive electronic components such as telecommunication equipment, 466 467 computer, control and instrumentation systems, radio systems, power electronic installations 3.10 468
- 469 internal systems
- electrical and electronic systems of a structure 470
- 3.11 471
- lines 472
- power lines or telecommunication lines connected to the structure to be protected 473