TECHNICAL REPORT

First edition

Design using geosynthetics —

Part 2: Separation

Conception utilisant des géosynthétiques —

Partie 2: Séparation

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF TR 18228-2 https://standards.iteh.ai/catalog/standards/sist/b5c3f736-1a71-4fe2-8817-3b36fbcae2c8/iso-prf-tr-18228-2

PROOF/ÉPREUVE

Reference number ISO/TR 18228-2:2021(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF TR 18228-2 https://standards.iteh.ai/catalog/standards/sist/b5c3f736-1a71-4fe2-8817-3b36fbcae2c8/iso-prf-tr-18228-2

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Fore	word		iv
Intr	oductio	n	v
1	Scop	e	1
2	Norn	native references	1
3	Tern	ns, definitions and symbols	1
4	Diffe 4.1 4.2 4.3	rent concepts General GRK classification 4.2.1 General 4.2.2 Stresses resulting from fill material 4.2.3 Stresses resulting from installation and construction operation 4.2.4 Determination of required geotextile robustness class "GRK" American Association of State Highway and Transportation Officials (AASHTO) M288	1 1 1 2 2 3 4
	4.4	4.3.1 General 4.3.2 General properties Other concepts	4 4 6
5	Insta	Illation	7
Bibl	iograph	iy	8

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF TR 18228-2 https://standards.iteh.ai/catalog/standards/sist/b5c3f736-1a71-4fe2-8817-3b36fbcae2c8/iso-prf-tr-18228-2

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 221, Geosynthetics.

A list of all parts in the ISO//TR/18228 series can be found on the ISO website 2-8817-

3b36fbcae2c8/iso-prf-tr-18228-2

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Introduction

The ISO/TR 18228 series provides guidance for designs using geosynthetics for soils and below ground structures in contact with natural soils, fills and asphalt. The series contains 10 parts which cover designs using geosynthetics, including guidance for characterization of the materials to be used and other factors affecting the design and performance of the systems which are particular to each part, with ISO/TR 18228-1 providing general guidance relevant to the subsequent parts of the series.

The series is generally written in a limit state format and guidelines are provided in terms of partial material factors and load factors for various applications and design lives, where appropriate.

This document includes information relating to the separation function. Details of design methodology adopted in a number of regions are provided.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF TR 18228-2 https://standards.iteh.ai/catalog/standards/sist/b5c3f736-1a71-4fe2-8817-3b36fbcae2c8/iso-prf-tr-18228-2

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/PRF TR 18228-2 https://standards.iteh.ai/catalog/standards/sist/b5c3f736-1a71-4fe2-8817-3b36fbcae2c8/iso-prf-tr-18228-2

Design using geosynthetics —

Part 2: Separation

1 Scope

This document provides general considerations to support the design guidance to geotechnical and civil engineers involved in the design of structures in which a geotextile is used to fulfil the function of separation of soils and below ground structures in contact with natural soils and fills.

These considerations are always based on installed soils, the installation process and on the strength and/or deformation behaviour of geosynthetics..

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 10318-1, Geosynthetics — Part 1: Terms and definitions

3 Terms, definitions and symbols RF TR 18228-2

https://standards.iteh.ai/catalog/standards/sist/b5c3f736-1a71-4fe2-8817-For the purposes of this document, the terms and definitions given in ISO 10318-1 apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <u>https://www.iso.org/obp</u>
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

4 Different concepts

4.1 General

There are several different concepts available worldwide for the design and application of geosynthetics for separation; several are presented in this document. The contents of the original documents are reproduced. However other concepts and approaches might also be available or applicable. The user of this document is intended to always refer to the most up to date version of the documents quoted.

4.2 GRK classification

4.2.1 General

This subclause presents a summary of the German GRK (Geotextilrobustheitsklasse)^[22] guidance for the use of geosynthetics and geosynthetic-related products mainly in separation.

The GRK is based on two characteristics, mass per unit area and strength. The development of this system is based on on-site testing and evaluation of robustness.

The mass per unit area is usually determined in accordance with ISO 9864.

In the case of non-woven geotextiles, the puncture force is usually measured in accordance with ISO 12236. In the case of woven geotextiles, the strength is usually measured in accordance with ISO 10319 in the weakest direction.

4.2.2 Stresses resulting from fill material

The GRK evaluation of which product to use is undertaken on the basis of several site-specific factors. This considers the type of soil that is used as fill material, the bearing capacity of the subgrade soil, as well as effects resulting from construction/installation operations.

The rut depth is not reduced substantially by the choice of a higher geotextile robustness class or a layer of fill material with increased thickness or shear parameters. Extreme stresses, resulting for example, from angular fill material and site traffic, which exceed the specifications of Table 1, can lead to more stringent requirements and would normally be considered on the basis of local experience or by preliminary tests.

<u>Table 1</u> is applicable to fine grained, sandy subgrade soils (SW, SE, SI, SU*, SU).

Appreciation level	Rounded fill material	Angular fill material		
AS 1	Applications where mechanical stresses resulting from the fill material have no influence on the selection			
AS 2	Coarse or mixed granular solls according DIN 18196 (SW, SE, SI, GW, GE, GI, SU, SU*, GU, G Ú*)tandards.it	PREVIEW eh.ai)		
AS 3	Coarse or mixed granular soils ≤ 40 % stones and cobbles <u>ISO/PRF TR 1822</u> https://standards.iteh.ai/catalog/standards/sist/	Coarse or mixed granular soils according DIN 18196 (SW, SE, SI, GW, GE, GI, SU, SU*, GU, GU*)		
AS 4	Coarse or mixed granular soils > 40 % stones and cobbles	182 Goarse or mixed granular soils ≤ 40 % stones and cobbles		
AS 5		Coarse or mixed granular soils > 40 % stones and cobbles		
a Processed fill ma	rocessed fill material (e.g. crushed stone, recycled material) is classified according to particle size and shape.			
* Indicates "very"	Indicates "very" silty.			
NOTE For definitions	NOTE For definitions of soil types, please refer to the original GRK document ^[22] .			

Table 1 — Stress to geotextiles resulting from fill material ^a

When the geotextile is placed on top of coarse or mixed granular subgrade soils (GW, GE, GI, GU, GU*, GT, GT*) the application level AS 2 to AS 4 would normally be increased by one level.

4.2.3 Stresses resulting from installation and construction operation

Rutting on the surface of a trafficked fill layer is caused by site traffic loading, which is counteracted by the resistance of the "fill material and subgrade soil" system. The resistance arises from the interaction of stiffness and deformability of the subgrade soil, as well as from the thickness and shear strength of the fill material. The rut depth cannot be influenced by the separation layer. The rut depth is a measure of the stress level applied to separation layers.

The geotextile robustness classes resulting from fill material and construction operation stresses given in <u>Table 2</u> describe the stress level applied to the separation layer. If a separation product with corresponding geotextile robustness class is applied, it can be assumed that it will withstand these stresses and thereby maintains its separation function.

Stress level	Installation of fill material	Compaction	Stress resulting from site traffic (fill above geotextile separation layer)
AB 1	Manual	No influence	No site traffic
AB 2	Equipment	Equipment	Estimated rut depth < 5 cm
AB 3	Equipment	Equipment	Estimated rut depth 5 cm ≤ 15 cm
AB 4	Equipment	Equipment	Estimated rut depth 15 cm ≤ 30 cm
AB 5	Equipment	Equipment	Estimated rut depth > 30 cm

Table 2 — Stress level resulting from installation and construction operation to the geotextile

4.2.4 Determination of required geotextile robustness class "GRK"

The robustness classes GRK 1 and GRK 2 will never result from the evaluation in <u>Table 3</u>. Therefore, these two classes have been deleted in the latest revision of the GRK system. The required geosynthetic characteristics are provided for each class in <u>Tables 4</u>, <u>5</u> and <u>6</u>.

Table 3 — Determination of required geotextile robustness class resulting from fill material and construction operation stresses

Application	Stress condition construction operation				
	AB 1	AB 2	AB 3	AB 4	AB 5
AS 1	GRK 3				
AS 2	GRK 3 ST	GRK3 R	D GRK3	GRK 4	GRK 5
AS 3	GRK 3	GRK 3	GRK 4	GRK 5	а
AS 4	GRK 4	can GRK 4 as.	GRK 5	а	а
AS 5	GRK 5	GRK 5	a	а	а

^a To reduce the rut depth either the fill height and/or the shear strength is to be increased and/or the system needs to be reinforced. To safeguard the separation function at large rut depths (AB 4, AB 5) products with large strains (elongation at break $\varepsilon > 50$ %) would normally be used. The efficiency of the procedures would normally be verified by field trials.

Table 4 — Robustness class (GRK) for non-woven geosynthetics

GRK	Static Puncture force (CBR) in accordance with ISO 12236	Mass per unit area in accordance with ISO 9864
3	≥ 1,5 kN	≥ 150 g/m ²
4	≥ 2,5 kN	≥ 250 g/m ²
5	≥ 3,5 kN	≥ 300 g/m ²

Table 5 — Robustness class (GRK) for woven geosynthetics from tapes or yarns (PP or PE)

	GRK	Tensile strength ^a in accordance with ISO 10319	Mass per unit area in accordance with ISO 9864
	3	≥ 35 kN/m	≥ 180 g/m ²
4 ≥ 45 kN/m			≥ 220 g/m ²
	5	≥ 50 kN/m	≥ 250 g/m ²
а	Defined with the lower value from "machine direction (MD)" or "cross machine direction (CD)".		

GRK	Т	Fensile strength^a in accordance with ISO 10319	Mass per unit area in accord- ance with ISO 9864
3		≥ 150 kN/m	≥ 320 g/m ²
4		≥ 180 kN/m	≥ 400 g/m ²
5		≥ 250 kN/m	≥ 550 g/m ²
^a Defined with the lower	Defined with the lower value from "machine direction (MD)" or "cross machine direction (CD)".		

Table 6 — Robustness class (GRK) for woven geosynthetics from multifilaments (mostly PET)

NOTE <u>Tables 2</u> to <u>6</u> are based on FGSV [22].

4.3 American Association of State Highway and Transportation Officials (AASHTO) M288

4.3.1 General

This subclause presents a summary of the part of AASHTO $M288^{[\underline{8}]}$ applicable to separation-only applications for the use of geotextiles.

M288 is a material purchasing specification and is based on geotextile survivability from installation stresses. The classes shown in <u>Table 7</u> reflect this basic premise.

M288 is applicable to the use of a geotextile to prevent mixing of a subgrade soil and an aggregate cover material (subbase, base, select embankment, etc.). M288 can also apply to locations other than beneath trafficked areas where separation of two dissimilar materials is required, but where water seepage through the geotextile is not a critical function. **Cards.iteh.ai**)

The separation application is appropriate for trafficked areas constructed over soils with a California Bearing Ratio equal to or greater than 3 % (CBR \geq 3). The M288 correlation suggests that this relates to a shear strength greater than approximately 90 kPa However, other countries guidance documents can suggest that a CBR value of 3 % correlates to a dower shean strength. It is appropriate for unsaturated subgrade soils. The primary function of a geotextile in this application is separation.

4.3.2 General properties

<u>Table 8</u> provides properties for three separation geotextile classes. The geotextile is normally required to conform to the properties of <u>Table 8</u> based on the geotextile class required in <u>Table 7</u>. All numerical values in <u>Table 8</u> except apparent opening size (AOS) represent minimum average roll value (MARV) in the weakest principal direction. Values for AOS represent maximum average roll values.