This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

INTERNATIONAL

Designation: E1006-02 Designation: E 1006 - 08

Standard Practice for Analysis and Interpretation of Physics Dosimetry Results for Test Reactors, E 706(II)¹

This standard is issued under the fixed designation E 1006; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers the methodology summarized in Annex A1 to be used in the analysis and interpretation of physics-dosimetry results from test reactors.

1.2 This practice relies on, and ties together, the application of several supporting ASTM standard practices, guides, and methods.

1.3 Support subject areas that are discussed include reactor physics calculations, dosimeter selection and analysis, exposure units, and neutron spectrum adjustment methods.

1.4 This practice is directed towards the development and application of physics-dosimetry-metallurgical data obtained from test reactor irradiation experiments that are performed in support of the operation, licensing, and regulation of LWR nuclear power plants. It specifically addresses the physics-dosimetry aspects of the problem. Procedures related to the analysis, interpretation, and application of both test and power reactor physics-dosimetry-metallurgy results are addressed in Practices E 185, E 560, E 853, and E 1035, Guides E 900, E 2005E2006, E 2006 and Test Method E 646.

1.5 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

E 185Practice for Conducting Surveillance Tests for Light Water-Cooled Nuclear Power Reactor Vessels, E706 (IF) Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

E 482 Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance, E706 (IID),

E 560 Practice for Extrapolating Reactor Vessel Surveillance Dosimetry Results, E706 (IC)^{2.3} E 706(IC)

E 646 Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet Materials

E 693 Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E706 (ID)^{2.3} E 706(ID)

E 706 Master Matrix for Light-Water Reactor Pressure Vessel Surveillance Standards, E706 (O)³ E 706(0)

E 844 Guide for Sensor Set Design and Irradiation for Reactor Surveillance, E706 (IIC)^{2.3} E 706(IIC)

E 853 Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results, E706 (IA)^{2.3} E706(IA)

E 854 Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance, E706 (HIB)^{2,3} E706(IIIB)

E 900Guide for Predicting Neutron Radiation Damage to Reactor Vessel Materials, E706 (IIF)^{2.3} Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials, E706 (IIF)

E 910<u>Specification</u> <u>Test Method</u> for Application and Analysis of Helium Accumulation Fluence Monitors for Reactor Vessel Surveillance, E706 (IIIC),³

E 944 Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance, E 706 (IIA),

E 1005 Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance, $E706 (IIIA)^{2.3} \underline{E}$ 706(IIIA)

E 1018 Guide for Application of ASTM Evaluated Cross Section Data File, E706 Matrix E 706 (IIB),³

E 1035 Practice for Determining RadiationNeutron Exposures for Nuclear Reactor Vessel Support Structures

Current edition approved June 10, 2002. Published September 2002. Originally published as E1006-84. Last previous edition E1006-96.

Current edition approved Nov. 1, 2008. Published December 2008. Originally approved in 1984. Last previous edition approved in 2002 as E 1006 – 02.

² The reference in parentheses refers to Section 5 as well as to Figs. 1 and 2 of Matrix E 706.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This practice is under the jurisdiction of ASTM Committee E10 on Nuclear Technology and Applications and is the direct responsibility of Subcommittee E10.05 on Nuclear Radiation Metrology.

E 2005 Guide for the Benchmark Testing of Reactor Dosimetry in Standard and Reference Neutron Field, E706 (IIE-I)^{2,3} Fields E 2006Guide for the Benchmark Testing of LWR Calculations, E706 (IIE-2)^{2,3} Guide for Benchmark Testing of Light Water Reactor Calculations

2.2 Nuclear Regulatory Documents:

Code of Federal Regulations, "Fracture Toughness Requirements," Chapter 10, Part 50, Appendix G³

Code of Federal Regulations, "*Reactor Vessel Materials Surveillance Program Requirements*," Chapter 10, Part 50, Appendix H³

Regulatory Guide 1.99, Rev 2, "Effects of Residual Elements on Predicted Radiation Damage to Reactor Vessel Materials," U.S. Nuclear Regulatory Commission, April 1977³

3. Significance and Use

3.1 The mechanical properties of steels and other metals are altered by exposure to neutron radiation. These property changes are assumed to be a function of chemical composition, metallurgical condition, temperature, fluence (perhaps also fluence rate), and neutron spectrum. The influence of these variables is not completely understood. The functional dependency between property changes and neutron radiation is summarized in the form of damage exposure parameters that are weighted integrals over the neutron fluence spectrum.

3.2 The evaluation of neutron radiation effects on pressure vessel steels and the determination of safety limits require the knowlege of uncertainties in the prediction of radiation exposure parameters (for example, dpa (Practice E 693), neutron fluence greater than 1.0 MeV, neutron fluence greater than 0.1 MeV, thermal neutron fluence, etc.). This practice describes recommended procedures and data for determining these exposure parameters (and the associated uncertainties) for test reactor experiments.

3.3 The nuclear industry draws much of its information from databases that come from test reactor experiments. Therefore, it is essential that reliable databases are obtained from test reactors to assess safety issues in Light Water Reactor (LWR) nuclear power plants.

4. Establishment of the Physics-Dosimetry Program

4.1 Reactor Physics Computational Mode:

4.1.1 Introduction— This section provides a reference set of procedures for performing reactor physics calculations in experimental test reactors. Although it is recognized that variations in methods will occur at various facilities, the present benchmarked calculational sequence has been used successfully in several studies (1-4)and provides procedures for performing physics calculations in test reactors. Emphasis in these guidelines is placed on use of deterministic methods, but a short discussion of Monte Carlo technique is used with about the same frequency as discrete ordinates techniques in test and research reactor dosimetry. The method is used more frequently in test/research reactors, as compared to power reactors, because of the very heterogeneous geometry often encountered in test/research reactors. Very complex geometries can be handled in 3D space using the Monte Carlo approach.

4.2 Determination of Core Fission Source Distribution—The total fission source distribution, in source neutrons per unit volume per unit time, defined as:

$$\underline{S}(x, y, z) = \int_{0}^{\infty} \nu(E) \Sigma_f(x, y, z, E) \cdot \phi(x, y, z, E) dE$$
(1)

$$S(x, y, z) = \int_0^\infty \nu(E) \Sigma_f(x, y, z, E) \cdot \phi(x, y, z, E) dE$$
(1)

where:

 $\nu(E)$ = number of neutrons per fission,

 Σ_f = macroscopic fission cross section, and

 ϕ = fluence rate.

is determined from a *k*-eigenvalue calculation of the reactor core, with the neutron fluence rate normalized to give the correct measured power output from the reactor, for example:

$$P = \int_{E} \int_{V} \kappa \Sigma_{f}(x, y, z, E) \phi(x, y, z, E) \cdot dx dy dz dE$$
⁽²⁾

where:

 κ = effective energy yield per fission, and

P = experimentally determined thermal power with the integral calculated over all energies E and the core volume vV.

4.2.1 An accurate value for the reactor power, P, is imperative for absolute comparison with experimental data.

³ Annual Book of ASTM Standards, Vol 12.02.

Available from Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402.

⁴ Annual Book of ASTM Standards, Vol 03.01.

⁴ The boldface numbers in parentheses refer to the list of references appended to this practice.