INTERNATIONAL STANDARD

1917

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION • MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ • ORGANISATION INTERNATIONALE DE NORMALISATION

Hydrated sodium perborates for industrial use — Determination of sodium oxide, boric oxide and available oxygen contents — Volumetric methods

Descriptors: boron oxides, chemical analysis, determination of content, oxygen, sodium borates, sodium oxides, volumetric analysis.

First edition - 1972-05-15

UDC 661.652 : 543

Ref. No. ISO 1917-1972 (E)

Price based on 2 pages

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 1917 was drawn up by Technical Committee VIII ISO/TC 47, Chemistry.

(standards.iteh.ai)
It was approved in July 1970 by the Member Bodies of the following countries:

Australia

Hungary Hungar Belgium

Chile Czechoslovakia Japan Switzerland Egypt, Arab Rep. of Netherlands Thailand France New Zealand Turkey

Germany Poland United Kingdom

Greece Portugal U.S.S.R.

No Member Body expressed disapproval of the document.

© International Organization for Standardization, 1972 •

Printed in Switzerland

Hydrated sodium perborates for industrial use — Determination of sodium oxide, boric oxide and available oxygen contents — Volumetric methods

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies volumetric methods for the determination of the sodium oxide, boric oxide and available oxygen contents of hydrated sodium perborates for industrial use.

2 PRINCIPLE

Determination of the sodium oxide content by addition of an excess of a solution of hydrochloric acid and back titration with a standard volumetric solution of sodium hydroxide, using screened methyl red as indicator.

Subsequent titration of the boric oxide with the standard volumetric solution of sodium hydroxide in the presences of mannitol or sorbitol, using phenolphthalein as indicator.

Determination of the available oxygen content by <u>lfttration 1972</u> pink colour. in acid solution with <u>lap standard volumetric potassium</u>/sist/ae019760-b5d6-462a-9e47-permanganate solution. <u>ldad664c0944/iso-1917-1972</u>

3 REACTION

The reaction involved in the determination of available oxygen is the following:

$$2 \text{ MnO}_4^- + 6 \text{ H}^+ + 5 \text{ O} = 2 \text{ Mn}^{2+} + 5 \text{ O}_2 + 3 \text{ H}_2 \text{ O}$$

4 REAGENTS

Distilled water or water of equivalent purity, free from carbon dioxide, shall be used in the test.

4.1 Mannitol, neutral, or alternatively sorbitol, neutral.

These products shall satisfy the following condition:

5.0 g, dissolved in 50 ml of carbon dioxide-free water, requires for neutralization not more than 0.3 ml of 0.02 N sodium hydroxide solution using phenolphthalein solution as indicator.

4.2 Hydrochloric acid, 0.5 N standard volumetric solution.

- **4.4 Sodium hydroxide**, 0.5 N standard volumetric solution, free from carbonate.
- **4.5 Potassium permanganate**, 0.1 N standard volumetric solution.
- 4.6 Screened methyl red, indicator solution.

Dissolve 0.01 g of methyl red and 0.01 g of bromocresol green in 95 % (V/V) ethanol and dilute to 100 ml with the same ethanol.

4.7 Phenolphthalein, 10 g/l ethanolic solution.

Dissolve 1 g of phenolphthalein in 95 % (V/V) ethanol, filute and 100 ml with the same ethanol and add 0.02 N sodium hydroxide solution until the first appearance of a pink colour.

5 APPARATUS

Ordinary laboratory apparatus.

6 SAMPLING

Follow the principles described in ISO 1).

7 PROCEDURE

7.1 Determination of sodium oxide and boric oxide contents

7.1.1 Test portion

Weigh, to the nearest $0.000\ 5\ g$, $2\ g$ of sodium perborate tetrahydrate or $1.5\ g$ of sodium perborate monohydrate.

7.1.2 Determination of sodium oxide content

Dissolve the test portion (7.1.1). in about 100 ml of water and add 0.4 ml of the screened methyl red indicator solution (4.6). Add 25.0 ml of the hydrochloric acid solution (4.2). Titrate with the sodium hydroxide solution (4.4) until the solution is just yellow. Retain this solution for the determination of boric oxide content (see 7.1.3).

^{4.3} Sulphuric acid, approximately 4 N solution.

¹⁾ Under study.

At the same time determine the equivalence of the two solutions (4.2) and (4.4) as follows:

Add 25.0 ml of the hydrochloric acid solution (4.2) to about 50 ml of water. Add 0.4 ml of the screened methyl red indicator solution (4.6) and titrate with the sodium hydroxide solution (4.4) until the solution is just yellow.

7.1.3 Determination of boric oxide content

To the solution retained from the determination of sodium oxide content (see 7.1.2), add approximately 15 g of the mannitol or sorbitol (4.1) and 0.4 ml of the phenolphthalein solution (4.7). Titrate the solution with the sodium hydroxide solution (4.4) to a distinct pink colour.

NOTE — The solution turns red on the addition of the mannitol or sorbital: on titration with the sodium hydroxide solution the colour. of the solution changes to yellow and subsequently to the phenolphthalein pink colour at the end point.

To ensure that the correct titration end point is obtained, the following standard colour matching solution may be used for comparison with the solution being titrated.

Mix

- 50 ml of a 3.81 g/l solution of disodium tetraborate decahydrate ($Na_2B_4O_7.10H_2O$).
- 100 ml of water,
- iTeh STANDA
- 1.0 ml of the hydrochloric acid solution (4.2),
- 0.4 ml of the screened methyl red indicator solution (4.6),
- 0.4 ml of the phenolphthalein solution (4.7).

Equal volumes of this solution and of the titrand shall be compared g/standards/stayae019/60-636-462a-9e47in similar beakers. 1dad664c0944/iso-1917-1972

7.2 Determination of available oxygen

7.2.1 Test portion

Weigh, to the nearest 0.000 2 g, 0.3 g of sodium perborate tetrahydrate or 0.2 g of sodium perborate monohydrate.

7.2.2 Determination

Introduce into a 250 ml conical flask about 100 ml of the sulphuric acid solution (4.3) and add the potassium permanganate solution (4.5), drop by drop, until a faint pink colour persists. Transfer the test portion (7.2.1) quantitatively to the flask. Stir thoroughly to dissolve and titrate with the potassium permanganate solution (4.5) until the faint pink colour, present before the addition of the sample, again persists.

8 EXPRESSION OF RESULTS

8.1 Sodium oxide content (Na₂ O) is given, as a percentage by mass, by the formula:

$$\frac{V_2 - V_1}{m_1} \times 1.549$$

where

 V_1 is the volume, in millilitres, of the sodium hydroxide solution (4.4) used in the titration of the excess of the hydrochloric acid solution (4.2):

 V_2 is the volume, in millilitres, of sodium hydroxide solution (4.4) used in the titration of the 25 ml of the hydrochloric acid solution (4.2);

 m_1 is the mass, in grams, of the test portion (7.1.1).

8.2 Boric oxide content (B₂O₃) is given, as a percentage by mass, by the formula:

$$\frac{V_3}{m_1} \times 1.741$$

where

 V_3 is the volume, in millilitres, of the sodium hydroxide solution (4.4) used in the titration, after addition of the mannitol or sorbitol (4.1);

(standards, iteh as, in grams, of the test portion (7.1.1).

ISO [8.3]: Available oxygen (O₂) is given, as a percentage by

 $\frac{V_4}{m_2} \times 0.080$

where

 V_4 is the volume, in millilitres, of the potassium permanganate solution (4.5) used in the titration;

 m_2 is the mass, in grams, of the test portion (7.2.1).

9 TEST REPORT

The test report shall include the following particulars:

- a) the reference of the method used;
- b) the results and the method of expression used;
- c) any unusual features noted during the determina-
- d) any operation not included in this International Standard or regarded as optional.