INTERNATIONAL STANDARD

First edition 2017-06

Building construction machinery and equipment — Plants for the preparation of concrete and mortar —

Part 1: Terminology and commercial specifications iTeh STANDARD PREVIEW

(S Machines et matériels pour la construction des bâtiments — Usines de préparation du béton et du mortier —

Partie 1; Terminologie et spécifications commerciales

https://standards.iteh.ai/catalog/standards/sist/f2ff2878-0b7e-412d-a042ccd3cbfd5291/iso-19720-1-2017

Reference number ISO 19720-1:2017(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 19720-1:2017</u> https://standards.iteh.ai/catalog/standards/sist/f2ff2878-0b7e-412d-a042ccd3cbfd5291/iso-19720-1-2017

© ISO 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Page

Contents

Forev	word			iv
1	Scop	е		
2	Norn	mative references		
3	Term	is and de	finitions	
4	Class	ification		6
5	Commercial specifications			7
	5.1		l characteristics	
	5.2	Charact	teristics of main components	
		5.2.1	Concrete mixing unit	
		5.2.2	Dry mortar mixing unit	
		5.2.3	Storage bin	
		5.2.4	Conveying equipment	
		5.2.5	Thermal energy equipment	
		5.2.6	Drying equipment.	
		5.2.7	Screening device	
		5.2.8	Batching equipment	9
		5.2.9	Packer	9
		5.2.10	Dry mortar storage silo	
	5.3	Other c	haracteristics	
Anne	x A (in		Examples of concrete and dry mortar mixing and batching plants	
	-		(standards.iteh.ai)	

<u>ISO 19720-1:2017</u>

https://standards.iteh.ai/catalog/standards/sist/f2ff2878-0b7e-412d-a042ccd3cbfd5291/iso-19720-1-2017

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 195, *Building construction machinery and equipment*, Subcommittee SC 1, *Machinery and equipment for concrete work*.

A list of all parts in the ISO 19720 series can be found on the ISO website.

Building construction machinery and equipment — Plants for the preparation of concrete and mortar —

Part 1: Terminology and commercial specifications

1 Scope

This document specifies terms and definitions and commercial specifications for concrete mixing plants, concrete batching plants and dry mortar mixing plants used in the preparation of concrete and mortar.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 11375, Building construction machinery and equipment — Terms and definitions

3 Terms and definitions(standards.iteh.ai)

For the purposes of this document, the terms and definitions given in ISO 11375 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

ISO Online browsing platform: available at http://www.iso.org/obp

— IEC Electropedia: available at <u>http://www.electropedia.org/</u>

3.1

concrete

material formed by mixing cement, coarse and fine aggregates, and water, with or without the incorporation of admixtures, additives or fibres, which develops its properties by hydration

3.2

mortar

mixture of binder (cement, etc.), fine aggregates, water and optional additives, which hardens and which is normally used as a jointing material

3.3

dry mortar

mixture of binder (cement, plaster, etc.), fine aggregates and optional additives and when mixed with water, hardens

3.4

concrete mixing plant

combination of structures and devices used for proportioning aggregates, cement, water and possible additives, admixtures, and mixing them by means of the *concrete mixing unit* (3.7) to generate *concrete* (3.1)

3.4.1

batch-type concrete mixing plant

concrete mixing plant (3.4) which runs periodically following defined processes including materials supply, proportion, charging, mixing and discharging

3.4.2

continuous concrete mixing plant

concrete mixing plant (3.4) in which all the processes including materials-supply, proportion, charging, mixing, discharging are operated continuously

3.4.3

vertical concrete mixing plant tower concrete mixing plant

configuration of *concrete mixing plant* (3.4) where the aggregate *storage bins* (3.9) are located above the concrete mixing unit (3.7)

Note 1 to entry: See Figure A.1.

3.4.4

horizontal concrete mixing plant

configuration of *concrete mixing plant* (3.4) where the aggregate *storage bins* (3.9) or an active storage are located to the side of the *concrete mixing unit* (3.7)

Note 1 to entry: An example of a horizontal concrete mixing plant where aggregates are loaded into bins with a wheel loader is shown in Figure A.2.

Note 2 to entry: An example of a horizontal concrete mixing plant where aggregates are loaded into bins with a drag-line is shown in Figure A.3. (standards.iteh.ai)

3.4.5

stationary concrete mixing plant

ISO 19720-1:2017 concrete mixing plant (3.4) which remains fixed tin place / during operation and designed to stay permanently in its position (e.g. installed on permanent foundations) until its dismantling

3.4.6

transferable concrete mixing plant

concrete mixing plant (3.4) which remains fixed in place during operation and where components can be quickly assembled and disassembled for transport from one place to another

Note 1 to entry: See Figure A.4.

3.4.7

mobile concrete mixing plant

concrete mixing plant (3.4) which remains fixed in place during operation and which is self-propelled or trailed to move from one place to another

Note 1 to entry: See Figure A.5.

3.5

concrete batching plant

combination of structures and devices used for proportioning aggregates, cement, and/or water, admixtures so that they can be ready for transport

3.5.1

vertical concrete batching plant

configuration of *concrete batching plant* (3.5) where the aggregate *storage bins* (3.9) are located above the batcher and the vehicle being loaded

Note 1 to entry: See Figure A.6.

3.5.2

horizontal concrete batching plant

configuration of *concrete batching plant* (3.5) where the aggregate *storage bins* (3.9) are arranged at the side of the charging (feeding) hopper

Note 1 to entry: See Figure A.7.

3.5.3

stationary concrete batching plant

concrete batching plant (3.5) which remains fixed in place during operation and is designed to stay permanently in its position (e.g. installed on permanent foundations) until its dismantling

Note 1 to entry: See Figure A.6.

3.5.4

transferable concrete batching plant

concrete batching plant (3.5) which remains fixed in place during operation and where components can be quickly assembled and disassembled for transport from one place to another

Note 1 to entry: See Figure A.7.

3.6

dry mortar mixing plant

combination of structures and devices used for proportioning binder (cement, plaster, etc.), fine aggregates and possible additives, and mixing them by means of the dry mortar mixing unit (3.8) to generate dry mortar (3.3) eh STANDARD PREVIEW

3.6.1

compact dry mortar mixing plant and ards.iteh.ai)

configuration of dry mortar mixing plant (3.6) where the aggregate storage bins (3.9) are arranged below the *dry mortar mixing unit* (3.8) and all the aggregates are lifted up beyond the mixing unit and then mass-dosed https://standards.iteh.ai/catalog/standards/sist/f2ff2878-0b7e-412d-a042-

ccd3cbfd5291/iso-19720-1-2017

Note 1 to entry: See Figure A.8.

3.6.2

serial dry mortar mixing plant

configuration of dry mortar mixing plant (3.6) where the aggregate storage bins (3.9) are arranged below the *dry mortar mixing unit* (3.8) and all the mass-dosed aggregates are lifted up beyond the mixing unit

Note 1 to entry: See Figure A.9.

3.6.3

tower dry mortar mixing plant

configuration of dry mortar mixing plant (3.6) where the aggregate storage bins (3.9) and batcher (3.15)are located above the *dry mortar mixing unit* (3.8)

Note 1 to entry: See Figure A.10.

3.7

concrete mixing unit

component of a *concrete mixing plant* (3.4) where measured (by mass or volume) proportions of water, cement, aggregate and possible additives, admixtures are mixed for a specified amount of time

3.8

dry mortar mixing unit

component of a dry mortar mixing plant (3.6) where mass-measured proportions of binder (cement, plaster, etc.), fine aggregates and possible additives are mixed for a specified amount of time

3.9

storage bin

container on mixing and batching plants used for storing raw materials (e.g. aggregates, cement)

Note 1 to entry: See <u>Figure A.1</u>.

3.10

conveying equipment

equipment used to transport materials from the storage area to the batching and/or mixing equipment

EXAMPLE Bucket elevator, belt conveyor.

Note 1 to entry: See <u>Figure A.1</u>, key number 1.

3.11

thermal energy equipment

equipment used for the generation, conversion of thermal energy for the drying of wet sand

EXAMPLE Fluidized bed furnace and burner.

3.12

drying equipment

equipment used to achieve heat exchange for the drying of wet sand

3.13

screening device

equipment used to classify and separate material particles by sizes passing through the grate openings

3.14

batching equipment

(standards.iteh.ai)

equipment used to prepare material or mixed material according to the proportion of *concrete* (<u>3.1</u>), *mortar* (<u>3.2</u>) and *dry mortar* (<u>3.3</u>) mixture <u>ISO 19720-1:2017</u> https://standards.iteh.ai/catalog/standards/sist/f2ff2878-0b7e-412d-a042-

3.15 https://standards.iteh.ai/catalog/standards/sist/f2ff2878-0b7e-412d-a042ccd3cbfd5291/iso-19720-1-2017

batcher

device consisting of the scales and necessary mechanism for its operation including cement batcher, aggregate batcher, additive batcher and water batcher, etc.

3.16

discharge device

mechanism that moves the mixed *concrete* (3.1) or *dry mortar* (3.3) to transport vehicle

Note 1 to entry: Discharge device of concrete mixing plant and batching plant is a fixed hopper while that of dry mortar mixing plant is extensible (see Figure A.2 and Figure A.10).

3.17

packer

machine which is able to automatically finish a series of operations for dry mortar (3.3) such as weighing, filling and sealing

3.18

dry mortar storage silo

enclosed device for storing *dry mortar* (3.3)

3.19

batching accuracy

relative deviation of the batched portion from the programmed value, expressed as a percent

Note 1 to entry: Batching accuracy is expressed by the following formula:

 $(m_a - m)/m \times 100 \%$

where

- *m* is the specified mass for batching;
- m_a is real value of a mass received in a batching process.

[SOURCE: ISO 15642:2003, 3.28]

3.20

discharge height

vertical distance from the lowest edge of discharge device of concrete mixing plant (3.4), concrete *batching plant* (3.5) and dry mortar mixing plant to the foundation plane when the equipment is working

Note 1 to entry: See Figures A.1 to A.10, dimension H.

Note 2 to entry: If the discharge device is extensible, it should have drawn back to the highest position while metering the discharge height. See Figures A.8 to A.10, dimension H.

3.21

where

cvcle time

duration from the start of charging components to the completion of preparation to accept the next charge after the reset

Note 1 to entry: The cycle time, t_c , is calculated from the following formula:

tc=t1+t2+t3+t4Teh STANDARD PREVIEW

- t₁ is the charging time(s); (standards.iteh.ai)
- t_2 is the mixing time(s);
- ISO 19720-1:2017 t_3 is the discharging time(s);
- t_4 is the reset time(s).
 - ccd3cbfd5291/iso-19720-1-2017

Note 2 to entry: Batching plant is without t_2 .

Note 3 to entry: Adapted from ISO 18650-1.

3.22

reset time

duration from the completion of the discharging to the start of charging for the next batch(s)

3.23

number of batches

quantity of batches of mixing or batching per one hour

Note 1 to entry: The number of batches per hour is calculated as follows:

 $n = 3.600/t_{\rm c}$

where

*t*_c is the cycle time(s).

Note 2 to entry: Adapted from ISO 18650-1.

3.24

nominal capacity

parameter equal to the components (cement + aggregates +/or water) capacity, or the output capacity of compacted ready concrete (3.1) and dry mortar (3.3) per batch of operation

Note 1 to entry: The components (cement + aggregates +/or water) capacity applies to batching plants.

3.25

theoretical output capacity

volume of compacted ready *concrete* (3.1) [*concrete mixing plant* (3.4)] or the components for mixing [*concrete batching plant* (3.5)] or mass of *dry mortar* (3.3) produced by a mixing plant and batching plant per hour of operation

Note 1 to entry: The theoretical output for batch type concrete mixing plant and batching plant is expressed by the following formula:

 $Q = n \times V_{\rm u}/1~000$

where

- *n* is the number of batches per hour (h^{-1}) ;
- $V_{\rm u}$ is the capacity of compacted ready concrete or the components for mixing (dm³);
- Q is the theoretical output capacity (m³/h).

Note 2 to entry: The theoretical output capacity for continuous concrete mixing plant is calculated as follows:

 $Q=3,6~q_{
m m}/
ho$

where

 $q_{\rm m}$ is the mass flow rate of charging concrete components (kg/s);

- ρ is the specific gravity of the produced concrete components (kg/dm³);
- Q is the theoretical output capacity (m³/h).

Note 3 to entry: The theoretical output for dry mortar mixing plant is expressed by the following formula:

 $Q = \rho \times n \times V_{\rm u} / 1\ 000$

(standards.iteh.ai)

where

- ρ is the specific gravity of the produced dry mortar components (t/m³); the specific gravity of the produced dry mortar components (t/m³);
- *n* is the number of batches per hour $(h_c^{-1}_{23}cbfd5291/iso-19720-1-2017)$
- $V_{\rm u}$ is the capacity of dry mortar (dm³);
- Q is the theoretical output capacity (t/h).

Note 4 to entry: Adapted from ISO 18650-1.

4 Classification

Machinery and plants for the preparation of concrete and mortar are divided into concrete mixing plant, concrete batching plant and dry mortar mixing plant.

In general terms, concrete mixing plants are typically classified by the following three main characteristics (see <u>Table 1</u>):

- production mode;
- position of aggregate bin relative to the mixing unit;
- mode and frequency of transportation.

Classification	Туре	Reference figures
Production mode	Batch-type concrete mixing plant	see <u>Figures A.1</u> to <u>A.5</u>
Froduction mode	Continuous concrete mixing plant	—
Position of aggregate bin relative to	Vertical (tower) concrete mixing plant	see <u>Figure A.1</u>
the mixing unit	Horizontal concrete mixing plant	see <u>Figures A.2</u> and <u>A.3</u>

Table 1 — Classification of the concrete mixing plant

Classification	Туре	Reference figures
	Stationary concrete mixing plant	see <u>Figures A.1</u> to <u>A.3</u>
Mode and frequency of transporta- tion	Transferable concrete mixing plant	see <u>Figure A.4</u>
	Mobile concrete mixing plant	see <u>Figure A.5</u>

Table 1 (continued)

In general terms, concrete batching plants are typically classified by the following two main characteristics (see Table 2):

- position of aggregate bin relative to the batcher and transport vehicle;
- mode and frequency of transportation.

Table 2 — Classification of the concrete batching plant

Classification	Туре	Reference figures
Position of aggregate bin relative to	Vertical concrete batching plant	see <u>Figure A.6</u>
the batcher and transport vehicle	Horizontal concrete batching plant	see <u>Figure A.7</u>
Mode and frequency of transporta-	Stationary concrete batching plant	see <u>Figure A.6</u>
tion	Transferable concrete batching plant	see <u>Figure A.7</u>

In general terms, dry mortar mixing plants are typically classified by the following main characteristics (see Table 3). **iTeh STANDARD PREVIEW**

Table 3 - Classification of the dry mortar mixing plant

Classification	Type	Reference figures
https://standards.ite	Compact dry mortar mixing plant	a042- see <u>Figure A.8</u>
Position of aggregate bin relative to the mixing unit and batcher	ccd3.Serialdrymortar mixing plant	see <u>Figure A.9</u>
	Tower dry mortar mixing plant	see <u>Figure A.10</u>

5 **Commercial specifications**

5.1 General characteristics

The following characteristics shall be specified:

- type and model a)
- b) manufacturer's name
- theoretical output capacity c)

kW

mm

t

- total installed power d)
- discharge height e)
- total mass (unloaded) f)
- dimensions: g)
 - 1) overall length m
 - 2) overall width m
 - 3) overall height m

m³/h (or t/h for dry mortar mixing plant)