ETSI TS 103 713 V16.0.0 (2022-05) Smart Secure Platform (SSP); SPI interface (Release 16) ETSI TS 103 713 V16.0.0 (2022-05) https://standards.iteh.ai/catalog/standards/sist/f6fb66f8-8df7-4374-83ef-7627e8892c3a/etsi-ts-103-713-v16-0-0-2022-05 | Reference | | | | | | |---------------------|--|--|--|--|--| | RTS/SET-T103713vg00 | | | | | | | | | | | | | | Keywords | | | | | | | M2M, MFF | | | | | | #### **ETSI** 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - APE 7112B Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° w061004871 #### Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find a security vulnerability in the present document, please report it through our Coordinated Vulnerability Disclosure Program: https://www.etsi.org/standards/coordinated-vulnerability-disclosure #### Notice of disclaimer & limitation of liability The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or other professional standard and applicable regulations. No recommendation as to products and services or vendors is made or should be implied. No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights. In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages. Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software. #### **Copyright Notification** No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. The content of the PDF version shall not be modified without the written authorization of ETSI. The copyright and the foregoing restriction extend to reproduction in all media. © ETSI 2022. All rights reserved. # Contents | Intelle | ectual Property Rights | 5 | |--------------------|--|----| | Forew | vord | 5 | | Moda | ıl verbs terminology | 6 | | 1 | Scope | 7 | | 2. | References | 7 | | 2.1 | Normative references | | | 2.2 | Informative references | | | 3 | Definition of terms, symbols and abbreviations | 8 | | 3.1 | Terms | | | 3.2 | Symbols | 8 | | 3.3 | Abbreviations | 8 | | 4 | Introduction | 9 | | 5 | SCL Under-Layers Protocol Stack | 9 | | 6 | Electrical interfaces | 10 | | 6.1 | Introduction | 10 | | 6.2 | Physical interface with 5 signals | | | 6.3 | Physical interface with 4 signals | | | 6.4 | Electrical characteristics | | | 6.4.1 | DC characteristics | 12 | | 6.4.2 | Data transfer mode, AC characteristics | 12 | | 6.5 | Slave state Standards if Ab 91) | 14 | | 6.5.1 | Slave state definitions | 14 | | 6.5.2 | Slave state diagram | 15 | | 7 | Data Link Layer <u>ETSI TS 103 713 V16.0.0 (2022-05)</u> | 16 | | 7.1 | Overview | | | 7.1 | MAC Layer 102.712.416.0.0.2022.05 | | | 7.2.1 | Overview | | | 7.2.1 | Timing | | | 7.2.2
7.2.2.1 | | | | 7.2.2.1
7.2.2.2 | | | | 7.2.2.2
7.2.2.3 | | | | 7.2.2.3
7.2.2.4 | 1 · · · · · 1 | | | 7.2.2.5
7.2.3 | 5 signals MAC layer | | | 7.2.3.1 | | | | 7.2.3.2 | | | | 7.2.3.3 | | | | 7.2.3.4 | | | | 7.2.3.5 | | | | 7.2.4 | 4 signals MAC layer | | | 7.2.4.1 | | | | 7.2.4.2 | | | | 7.2.4.3 | | | | 7.2.4.4 | | | | 7.2.4.5 | | | | 7.2.4.6 | | | | 7.2.4.7 | | | | 7.3 | Link Layer Frame | | | 7.3.1 | Overview | | | 7.3.2 | Frame generation and transfer rules | | | 7.3.2.1 | | | | 7.3.2.2 | | | | 7.3.2.3 | | | | | | | | 7.3.2.4 | 4 Slave frame retrieval in two SPI accesses | 25 | |---------|---|-----------| | 7.3.3 | Data transfer cases | | | 7.4 | LLC layers | 27 | | 7.5 | Interworking of the LLC layers | | | 7.6 | MCT LLC definition | 29 | | 7.6.1 | MCT LPDU structure | 29 | | 7.6.2 | MCT_DATA from master | 30 | | 7.6.3 | MCT_DATA from slave | 31 | | 7.6.4 | MCT activation procedure | 32 | | 7.7 | SHDLC LLC definition | 32 | | 7.7.1 | SHDLC overview | 32 | | 7.7.2 | Endpoints | 32 | | 7.7.3 | Flow control | 33 | | 7.7.3.1 | 1 Overview | 33 | | 7.7.3.2 | Flow control based on SHDLC | 33 | | 7.8 | Power management | 33 | | 7.8.1 | Power saving mode | 33 | | 7.8.2 | Conditions for entering power saving mode | 33 | | 7.8.2.1 | Slave entering power saving mode | 33 | | 7.8.2.2 | 2 Master entering power saving mode | 34 | | 7.8.3 | Resuming from power saving mode | 34 | | 7.8.3.1 | 1 Resuming the slave from power saving mode | 34 | | 7.8.3.2 | 2 Resuming the master from power saving mode | 34 | | Anne | ex A (informative): Slave SPI interface states electrical description | 35 | | A.1 | Slave SPI interface for 5 wire interface | 35 | | A.1.1 | Slave SPI 5 wire interface diagram | | | A.1.2 | | | | | (standauda itak ai) | | | A.2 | Slave SPI interface states for 4 wire interface | | | A.2.1 | Slave SPI 4 wire interface diagram | | | A.2.2 | E18F18 105 713 V16.0.0 (2022-05) | | | Anne | ex B (informative): Change history | etsiets38 | | Histor | 103-713-v16-0-0-2022-05 | 30 | ## Intellectual Property Rights #### **Essential patents** IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/). Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document. #### **Trademarks** The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks. **DECT**TM, **PLUGTESTS**TM, **UMTS**TM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP**TM and **LTE**TM are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M**TM logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. **GSM**[®] and the GSM logo are trademarks registered and owned by the GSM Association. ## **Foreword** This Technical Specification (TS) has been produced by ETSI Technical Committee Secure Element Technologies (SET). The contents of the present document are subject to continuing work within TC SET and may change following formal TC SET approval. If TC SET modifies the contents of the present document, it will then be republished by ETSI with an identifying change of release date and an increase in version number as follows: Version x.y.z where: - x the first digit: - 0 early working draft; - 1 presented to TC SET for information; - 2 presented to TC SET for approval; - 3 or greater indicates TC SET approved document under change control. - y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc. - z the third digit is incremented when editorial only changes have been incorporated in the document. # Modal verbs terminology In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions). "must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation. # iTeh STANDARD PREVIEW (standards.iteh.ai) ETSI TS 103 713 V16.0.0 (2022-05) https://standards.iteh.ai/catalog/standards/sist/f6fb66f8-8df7-4374-83ef-7627e8892c3a/etsi-ts- ## 1 Scope The present document describes the SPI interface for the communication of an SSP, as defined in ETSI TS 103 666-1 [1] using the SCL protocol. ## 2 References #### 2.1 Normative references References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies. • In the case of a reference to a TC SET document, a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document. Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference/. NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity. The following referenced documents are necessary for the application of the present document. - [1] ETSI TS 103 666-1: "Smart Secure Platform (SSP); Part 1: General characteristics". - [2] ETSI TS 102 613: "Smart Cards; UICC Contactless Front-end (CLF) Interface; Physical and data link layer characteristics". - [3] ISO/IEC 13239: "Information Technology -- Telecommunications and information exchange between systems -- High-level Data Link Control (HDLC) procedures". ## 2.2 Informative references References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies. • In the case of a reference to a TC SET document, a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document. NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity. The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area. [i.1] ETSI TR 102 216: "Smart cards; Vocabulary for Smart Card Platform specifications". #### Definition of terms, symbols and abbreviations 3 #### 3.1 **Terms** For the purposes of the present document, the terms given in ETSI TR 102 216 [i.1] and the following apply: data transfer: information exchange during an SPI access between the master and the slave with SPI_MISO driven by the slave and SPI_MOSI driven by the master while the master is toggling the SPI_CLK signal flow control: mechanism of the Data Link Layer that consists of methods applied by the transmitter in order to send at any time a number of logical data units that can be accepted by the receiver frame: link layer data structure consisting of a prologue or frame header, payload and epilogue or trailer usually containing the CRC bytes MAC access request: request from the slave to the master for a data transfer, i.e. a MAC phase initiated by the slave MAC phase: initiation of a data transfer by the master and/or request for a data transfer by the slave SPI access: SPI_NSS assertion by the master, if not already asserted in the MAC phase, followed by SPI_CLK start for transferring a certain number of bytes according to the SPI master configuration The number of bytes transferred during an SPI access is always the same in both directions on SPI_MISO and SPI MOSI and is also referred to as access length. window size: maximum number of logical data units that can be sent from the transmitter to the receiver without any link layer acknowledgements for any of these data units window size slot: fixed space used by the slave in the receive buffer for the logical data units The length of a window size slot equals the Data Link Layer MTU. Symbols ai/catalog/standards/sist/f6fb66f8-8df7-4374-83ef-7627e8892c3a/etsi-ts- Void. Α #### **Abbreviations** 3.3 For the purposes of the present document, the following abbreviations apply: Asserted AC Alternating Current **ACT** Activation **CLF** ContactLess Frontend **CLT** ContactLess Tunnelling Command **CMD CPHA** Clock Phase CPOL Clock Polarity CRC Cyclic Redundancy Check D Driven (either Low Level or High Level) DA De-Asserted DC Direct Current HiZHigh Impedance Input Ignored П IL Input Listened Input/Output IO IOH High Output Current (Output current corresponding to VOH) IOL Low Output Current (Output current corresponding to VOL) Logical Link Control LLC LPDU Link Protocol Data Unit | MAC | Medium Access Control | |-------|---| | MCT | MAC aCTivation | | MISO | Master Input Slave Output | | MOSI | Master Output Slave Input | | MSB | Most Significant Bit | | MTU | Maximum Transmission Unit | | NSD | Non-Significant Data | | OD | Open Drain | | OSI | Open System Interconnection | | POT | Power-On Time | | RFU | Reserved for Future Use | | SCL | SSP Common Layer | | SHDLC | Simplified High Level Data Link Control | | SPI | Serial Peripheral Interface | | SS_MI | Slave Select Master Input signal | | SS_MO | Slave Select Master Output signal | | SS_SI | Slave Select Slave Input signal | | SS_SO | Slave Select Slave Output signal | | SSP | Smart Secure Platform | | SWP | Single Wire Protocol | | NOTE: | As defined in ETSI TS 102 613 [2]. | | UICC | Universal Integrated Circuit Card | | VDD | Supply Voltage | | VIH | High Input Voltage (Input Voltage for High Logic Level) | | VIL | Low Input Voltage (Input Voltage for Low Logic Level) | | VOH | High Output Voltage (Output Voltage for High Logic Level) | | VOL | Low Output Voltage (Output Voltage for Low Logic Level) | | | (standards.iteh.ai) | | | | # 4 Introduction ETSLTS 103 713 V16.0.0 (2022-05) The Serial Peripheral Interface (SPI) is a serial synchronous full-duplex communication interface between a single master and one or more slaves present on the same SPI bus, each slave being selected at one time by a dedicated SPI_NSS signal. This clause defines the physical, MAC and data link layers for the SPI interface. In this clause the terms master and slave refer respectively to the terms master SPI and slave SPI. ## 5 SCL Under-Layers Protocol Stack Figure 5.1 illustrates the protocol stack below the SCL supporting the SPI interface. Figure 5.1: Protocol stack for SPI Interface ## 6 Electrical interfaces and s.i. #### 6.1 Introduction ETSLTS 103 713 V16.0.0 (2022-05) In the clauses below, different implementations of SPI interface are defined. These implementations allow bi-directional communication and the possibility for the slave to initiate communication with the master when it has data available thus avoiding the necessity for continuous polling to be performed by master. Slave may initiate communication to send a command without a prior command from master. ## 6.2 Physical interface with 5 signals Figure 6.1 illustrates the SPI electrical interface using 5 signals. Figure 6.1: SPI electrical interface with 5 signals This SPI interface describes two sets of signals: - The generic and legacy SPI interface using the 4 signals: - SPI_MOSI (Master Output Slave Input); - SPI_MISO (Master Input Slave Output); - SPI CLK (clock); - SPI_NSS signal used for the selection of a Slave Endpoint among N slaves sharing the same bus; SPI_MISO, SPI_MOSI and SPI_CLK can be shared between several SPI slaves present on the same SPI bus. The SPI_INT signal allows the slave to initiate a MAC access request in order to notify the master to start a data transfer. SPI_INT is defined as an edge-triggered interrupt. It is asserted on the rising edge of the signal. SPI_NSS is considered active or asserted at low voltage level. ## 6.3 Physical interface with 4 signals Figure 6.2 illustrates the SPI interface using 4 signals, bi-directional SPI_NSS. Figure 6.2: SPI electrical interface with 4 signals, bi-directional SPI_NSS The SPI interface with 4 signals describes two sets of signals: - The three generic and legacy SPI signals as SPI_MOSI (Master Output Slave Input), SPI_MISO (Master Input Slave Output) and SPI_CLK (clock). These signals can be shared between several SPI slaves as a bus. - The SPI_NSS (Negative Slave Select) signal used for the selection of a slave endpoint among N slaves sharing the same bus and for the slave to initiate a MAC access request to notify the master to initiate a data transfer. SPI_NSS is considered active or asserted at low voltage level. SPI_NSS requires a bidirectional IO implementing an Open Drain (OD) interface for both master and slave. This configuration allows driving the SPI_NSS signal to low voltage level by both master and slave without electrical conflict. A pull-up resistor keeps SPI_NSS at high state level (i.e. idle state) when SS_MO and SS_SO are not asserted. The SPI_NSS signal is at low state when either SS_MO or SS_SO are asserted. NOTE: The current industry de-facto SPI specification defines SPI_NSS signal as unidirectional, driven by the master. However, in the present document the SPI_NSS in the 4 signals configuration is bidirectional. Table 6.1: Definition of the signals | Signal | Description | |---------|--| | | Internal master output signal for SPI_NSS assertion. SS_MO is at high state level for generating a SPI_NSS signal assertion (i.e. low level state) | | | Internal slave output signal for SPI_NSS assertion. SS_SO is at high state level for generating a SPI_NSS signal assertion (i.e. low level state) | | | Internal master input signal indicating SPI_NSS status. SS_MI is at high state level when the SPI_NSS signal is not asserted | | SS_SI | Internal slave input signal indicating SPI_NSS status. SS_SI is at high state level when the SPI_NSS signal | | | is not asserted | | SPI_NSS | SPI_NSS signal: low state level when asserted | ## 6.4 Electrical characteristics #### 6.4.1 DC characteristics The SPI Electrical specification interface is defined for VDD operational voltage classes B and C as defined in ETSI TS 103 666-1 [1], clause 6.2.2.3. An implementation shall support at least one of these voltage classes. NOTE: The negotiation of the voltage class between the master and the slave is not defined in the present document. Table 6.2: DC characteristics for operational voltage class B | Parameter | Symbol | / A Min | Max | Unit | Note/Test condition | |---|-------------------|-------------------|------------------|-------|---------------------| | Input high voltage | VIH | 0,7 × VDD | VDD + 0,5 | V | | | Input low voltage | VIL | -0,5 | $0.3 \times VDD$ | V | | | Output high voltage | VOH | 0,9 × VDD | 111.411 | V | IOH = -100 uA | | Output low voltage | VOL | | 0,1 × VDD | V | IOL = 1,0 mA | | SPI_NSS Low Level Output current (see note) | IOL
SI TS 103 | -1
713 V16.0.0 | <u>2022-05)</u> | mA | VOL = 0,3 V | | Maximal SPI_NSS line capacitance | C tandards | sist/f6fb66f8-86 | 20-4374-83ef- | pF27e | 3892c3a/etsi-ts- | | (see note) | 102 71 | 2 16 0 0 202 | 2.05 | | | | NOTE: Applicable for the physical interface with 4 signals. | | | | | | Table 6.3: DC characteristics for operational voltage class C | Parameter | Symbol | Min | Max | Unit | Note/Test condition | |---|--------|-----------|-----------|------|---------------------| | Input high voltage | VIH | 0,7 × VDD | VDD + 0,3 | V | | | Input low voltage | VIL | -0,3 | 0,3 × VDD | V | | | Output high voltage | VOH | 0,9 × VDD | | V | IOH = -100 uA | | Output low voltage | VOL | | 0,1 × VDD | V | IOL = 1,0 mA | | SPI_NSS Low Level Output current | IOL | -1 | - | mΑ | VOL = 0,3 V | | (see note) | | | | | | | Maximal SPI_NSS line capacitance | CI | - | 20 | pF | | | (see note) | | | | | | | NOTE: Applicable for the physical interface with 4 signals. | | | | | | The value of the resistor R in figure 6.2 shall be selected for a resultant maximum current lower than or equal to the minimum between the absolute IOL values of the master and the slave. ### 6.4.2 Data transfer mode, AC characteristics The SPI interface shall implement the SPI mode 0 according to the industry de-facto SPI specification.