INTERNATIONAL STANDARD ISO 21561-1 First edition 2015-07-15 # Styrene-butadiene rubber (SBR) — Determination of the microstructure of solution-polymerized SBR — Part 1: ¹H-NMR and IR with cast-film method Teh ST Caoutchouc styrène-butadiène (SBR) → Détermination de la microstructure du SBR polymérisé en solution — Partie 1: Méthode ¹H-NMR et IR avec film moulé ISO 21561-1:2015 https://standards.iteh.ai/catalog/standards/sist/8fde70d1-e52e-4354-b54e-9cecdcf2b6ae/iso-21561-1-2015 ## iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 21561-1:2015 https://standards.iteh.ai/catalog/standards/sist/8fde70d1-e52e-4354-b54e-9cecdcf2b6ae/iso-21561-1-2015 #### COPYRIGHT PROTECTED DOCUMENT #### © ISO 2015, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Contents Page | | | | | | |----------------------|---|-----------------------|--|--|--| | Forew | I | .iv | | | | | 1 | ope | 1 | | | | | 2 | rmative references | 1 | | | | | 3 | AR method (absolute method) Principle Reagents Apparatus Sampling Procedure Determination of the microstructure | 1
2
2
2 | | | | | 4 | method (relative method) Principle Reagents Apparatus Sampling Procedure 4.5.1 Preparation of sample solution 4.5.2 Preparation of film coating 4.5.3 Measurement of IR spectrum Determination of microstructure 4.6.1 Measurement of absorbance corresponding to each microstructure component 4.6.2 Calculations: 2 1 6 2 1 5 1 1 2 1 6 2 16 5 16 16 16 16 16 16 16 16 16 16 16 16 16 | 4
4
5
5
5 | | | | | 5 | ecision <u>ISO 24561-4:2045</u> | 9 | | | | | 6
Annex | Test report https://standards.iteh.ai/catalog/standards/sist/8fde70d1-e52e-4354-b54e-9cecdcf2b6ae/iso-21561-1-2015 ex A (informative) Procedure for sample-film preparation and measurement of microstructure by FTIR spectrophotometry | | | | | | Annes | nex B (informative) Precision1 | | | | | | | Ribliography | | | | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 2, *Testing and analyses*. ISO 21561-1:2015 This first edition of ISO 21561-1, together with ISO 21561-2, cancels and replaces ISO 21561:2005, which has been technically and nominally revised with the following changes: - the descriptions of D's were modified in 4.6.2; - some terms and expressions were revised to be aligned with those in the ISO 21561-2 to be (ATR method); - it also incorporates the Amendment, ISO 21561:2005/Amd 1:2010. ISO 21561 consists of the following parts, under the general title *Styrene-butadiene rubber (SBR)*: - Part 1: ¹H-NMR and IR with cast-film method - Part 2: FTIR with ATR method ### Styrene-butadiene rubber (SBR) — Determination of the microstructure of solution-polymerized SBR — #### Part 1: ### ¹H-NMR and IR with cast-film method WARNING — Persons using this International Standard should be familiar with normal laboratory practice. This International Standard does not purport to address all the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions. CAUTION — Certain procedures specified in this International Standard may involve the use or generation of substances, or the generation of waste, that could constitute a local environmental hazard. Reference should be made to appropriate documentation on safe handling and disposal after use. #### 1 Scope This part of ISO 21561 specifies procedures for the quantitative determination of the microstructure of the butadiene and the content of styrene in solution-polymerized SBR (S-SBR) by $^1\mathrm{H-NMR}$ spectrometry as an absolute method and by IR spectrometry as a relative method. The styrene content is expressed in mass % relative to the whole polymer. The trans, cis and vinyl contents are expressed in mol % relative to the butadiene. These methods are applicable only for raw rubber. NOTE 1 IR spectrometry can also give absolute values of microstructure by calibration with S-SBRs of known absolute microstructure obtained by $^1\text{H-NMR}$ spectrometry 1-2015 NOTE 2 Only "vinyl", "trans" and "cis" are used in this part of ISO 21561. However, the expression of vinyl, trans and cis mean as follows in general: - vinyl: vinyl unit, vinyl bond, 1,2-unit, 1,2-bond, 1,2-vinyl-unit or 1,2-vinyl-bond; - trans: 1,4-trans unit, 1,4-trans bond, trans-1,4 unit or trans1,4 bond; - cis: 1,4-cis unit, 1,4-cis bond, cis-1,4 unit or cis-1,4 bond. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 1407, Rubber — Determination of solvent extract ISO 1795, Rubber, raw natural and raw synthetic — Sampling and further preparative procedures #### 3 NMR method (absolute method) #### 3.1 Principle **3.1.1** A small quantity of an extracted S-SBR is dissolved in deuterated chloroform. #### ISO 21561-1:2015(E) **3.1.2** A ¹H-NMR spectrum of the sample solution is measured at a 15 ppm sweep width. With the peak areas obtained from ¹H-NMR, calculate the microstructure of the butadiene portion and the styrene content by the theoretical formulae. #### 3.2 Reagents - **3.2.1 Deuterated chloroform**, CDCl₃, containing 0,03 % of tetramethyl silane (TMS) as internal standard. The purity of the CDCl₃ itself shall be >99,8 %. - 3.2.2 Ethanol-toluene azeotrope (ETA). - 3.2.3 Acetone. - 3.3 Apparatus - **3.3.1 1H-NMR spectrometer**, Fourier transform nuclear magnetic resonance (FT-NMR) spectrometer with a resonance frequency of 150 MHz or higher. - **3.3.2** Extraction apparatus, as described in ISO 1407. - 3.3.3 Vacuum oven, operated at 50 °C to 60 °C. TANDARD PREVIEW - 3.3.4 Analytical balance, accurate to (31-mgndards.iteh.ai) #### 3.4 Sampling ISO 21561-1:2015 The raw rubber shall be sampled in accordance with ISO 1795. #### 3.5 Procedure - **3.5.1** Extract rubber additives such as extender oil and antioxidants in accordance with ISO 1407, using ETA or acetone as the extraction solvent. Dry the extracted S-SBR under vacuum in the oven at $50\,^{\circ}\text{C}$ to $60\,^{\circ}\text{C}$. - **3.5.2** Take 15 mg to 50 mg of the extracted S-SBR and dissolve it completely in 0,5 ml of deuterated chloroform (3.2.1). The concentration of this sample solution shall be selected according to the resolution of the spectrometer used. - **3.5.3** Measure the ¹H-NMR spectrum of the S-SBR solution and a solvent blank [deuterated chloroform (3.2.1)] under the following conditions: Mode single-pulse mode Measurement temperature room temperature to 50 °C No. of data points 32 k Offset 5 ppm Sweep width 15 ppm or wider Flip angle 30° pulse Pulse repetition 4 s to 30 s **TMS** Accumulation 32 times to 256 times #### 3.6 Determination of the microstructure **3.6.1** Integrate the signal intensities of the 1 H-NMR spectrum over each of the areas A, B and C defined in Table 1. Figure 1 gives an example of a 1 H-NMR spectrum showing the areas A, B and C. Area Signal integration range A From 4,3 ppm to minimum intensity point around 5,0 ppm B From minimum intensity point around 5,0 ppm to minimum intensity point around 6,1 ppm C From minimum intensity point around 6,1 ppm to 7,7 ppm TMS_{blank} Integrated signal intensity of TMS in CDCl₃ containing TMS CD_{blank} From 6,1 ppm to 7,7 ppm in CDCl₃ containing TMS Integrated signal intensity of TMS in S-SBR sample solution Table 1 — Definition of signal integration areas #### Key X shift (ppm) A, B, C signal integration areas Figure 1 — Example of a Text ¹H-NMR spectrum for an S-SBR **3.6.2** Normalize the solvent blank measured in <u>3.5.3</u> using Formula (1) and subtract it from the signal intensity of the solvent determined from the integrated signal intensity of area *C*: #### ISO 21561-1:2015(E) $$C_{\text{calib}} = C - CD_{\text{blank}} \times (TMS/TMS_{\text{blank}}) \tag{1}$$ where C_{calib} is the integrated signal intensity of area C compensated for the effect of CHCl₃ in CDCl₃. **3.6.3** Calculate the content of each microstructure component (trans and cis, and vinyl) of the butadiene portion and the styrene content, using Formulae (2) to (4): $$S_m = \frac{(C_{\text{calib}}/5) \times 104}{(C_{\text{calib}}/5) \times 104 + (B/2 + A/4) \times 54} \times 100$$ (2) $$V = \frac{A/2}{B/2 + A/4} \times 100$$ (3) $$TC = \frac{B/2 - A/4}{B/2 + A/4} \times 100$$ (4) where S_m is the styrene content of the S-SBR, in mass %; V is the vinyl content of the butadiene portion of the S-SBR, in mol %, TC is the trans and the cis content of the butadiene portion of the S-SBR, in mol %. #### 4 IR method (relative method) ISO 21561-1:2015 https://standards.iteh.ai/catalog/standards/sist/8fde70d1-e52e-4354-b54e-9cecdcf2b6ae/iso-21561-1-2015 #### 4.1 Principle - **4.1.1** A small quantity of extracted S-SBR is dissolved in cyclohexane and coated on a KBr plate. - **4.1.2** The IR spectrum of the S-SBR sample on the KBr plate is measured over the range from 1 200 cm⁻¹ to 600 cm⁻¹. From the absorbances at four specified wavelengths, the contents of the trans, the cis, the vinyl and the styrene are calculated using Hampton's method (see Reference [1] in the Bibliography). - **4.1.3** IR spectrometry can also give absolute values of microstructures by calibration with S-SBRs of known absolute microstructure obtained by $^1\text{H-NMR}$ spectrometry. #### 4.2 Reagents - 4.2.1 Ethanol-toluene azeotrope (ETA). - 4.2.2 Acetone. - 4.2.3 Cyclohexane. #### 4.3 Apparatus **4.3.1 IR spectrophotometer**, Fourier transform infrared (FTIR) spectrophotometer or double-beam IR spectrophotometer. - **4.3.2 Extraction apparatus**, as described in ISO 1407. - **4.3.3 Vacuum oven**, operated at 50 °C to 60 °C. - **4.3.4 Analytical balance**, accurate to 0,1 mg. - **4.3.5 20 ml sample vial**, with cap. - **4.3.6 Pasteur pipette**, and 10 ml pipette. - **4.3.7 KBr plate**, for IR spectrophotometry. - **4.3.8 Holder**, for KBr plate. - **4.3.9 Metal spacer**, of 0,1 mm thickness. #### 4.4 Sampling The raw rubber shall be sampled in accordance with ISO 1795. #### 4.5 Procedure ### iTeh STANDARD PREVIEW 4.5.1 Preparation of sample solution (standards.iteh.ai) **4.5.1.1** Extract extender oil and antioxidant from the S-SBR in accordance with ISO 1407, using ETA or acetone. Dry the extracted S-SBR in a vacuum oven at 50 °C to 60 °C. https://standards.iteh.ai/catalog/standards/sist/8fde70d1-e52e-4354-b54e- - **4.5.1.2** Put 0.2 g of extracted S-SBR sample in a 20 ml sample vial. - **4.5.1.3** Add 10 ml of cyclohexane to the sample vial using the 10 ml pipette. Place the cap on the vial and shake to dissolve the S-SBR completely. #### 4.5.2 Preparation of film coating - **4.5.2.1** Place the 0,1 mm thick metal spacer on the KBr plate and spread the sample solution uniformly in the spacer hole using the Pasteur pipette. - **4.5.2.2** Remove any excess sample solution from the spacer, leaving a film of uniform thickness. As film thickness affects absorbance, adjust the volume of sample solution accordingly. - **4.5.2.3** Dry the sample solution on the KBr plate. - **4.5.2.4** Remove the spacer from the KBr plate and place the KBr plate in the holder ready for insertion in the IR spectrophotometer. - NOTE Details of the equipment and procedure for preparing the film coating are given in Annex A. #### 4.5.3 Measurement of IR spectrum - 4.5.3.1 Measurement by Fourier transform IR spectrophotometer - **4.5.3.1.1** Measure the background spectrum of a blank KBr plate from 1 200 cm⁻¹ to 600 cm⁻¹. - **4.5.3.1.2** Measure the spectrum of the sample KBr plate from 1 200 cm⁻¹ to 600 cm⁻¹. - **4.5.3.1.3** In order to ensure good reproducibility, the maximum absorbance for the sample spectrum shall be in the range from 0,10 to 0,15. - **4.5.3.1.4** An example of an FTIR spectrum is shown in Figure 2. #### 4.5.3.2 Measurement by double-beam IR spectrophotometer - **4.5.3.2.1** Place blank KBr plates in both the sample and reference paths, and measure the background spectrum from 1 200 cm⁻¹ to 600 cm⁻¹ in the absorbance mode. - **4.5.3.2.2** Place the sample KBr plate in the sample path and a blank KBr plate in the reference path. Measure the sample spectrum from 1 200 cm⁻¹ to 600 cm⁻¹ in the absorbance mode. - **4.5.3.2.3** In order to ensure good reproducibility, the maximum absorbance for the sample spectrum shall be in the range from 0,10 to 0,15. - **4.5.3.2.4** Produce a difference spectrum for the calculation of the microstructure by subtracting the background spectrum from the sample spectrum. #### Key - 1 trans - 2 vinyl - 3 cis - 4 styrene Figure 2 — An example of an FTIR spectrum for an S-SBR #### 4.6 Determination of microstructure #### 4.6.1 Measurement of absorbance corresponding to each microstructure component Measure the absorbance values at the wave numbers corresponding to the microstructure components as specified in <u>Table 2</u>. For "cis", the absorption peak is weak and the wave number of the peak is affected by the styrene content of the polymer. Table 2 — Measurement of absorbances for each microstructure component of S-SBR | Notation for absorbance | Microstructure component | Remarks | |-------------------------|--------------------------|--| | D_{t} | trans | Measure the absorbance at the peak maximum from $960\mathrm{cm}^{-1}$ to $980\mathrm{cm}^{-1}$. | | $D_{ m V}$ | vinyl | Measure the absorbance at the peak maximum from $900\mathrm{cm}^{-1}$ to $920\mathrm{cm}^{-1}$. | | D_{c} | cis | The wave number at this peak maximum is affected by the nature of the polymer, such as the styrene content. When the peak maximum is visible, read off the absorbance at the peak maximum from $720\mathrm{cm}^{-1}$ to $740\mathrm{cm}^{-1}$. If the styrene content is over 30% , the peak of the cis is hidden between the two large styrene absorptions at $755\mathrm{cm}^{-1}$ and $699\mathrm{cm}^{-1}$. In this case, measure the absorbance value at $724\mathrm{cm}^{-1}$. | | D_{S} | styrene | Measure the absorbance at the peak maximum from $690\mathrm{cm^{-1}}$ to $710\mathrm{cm^{-1}}$. | #### **Calculation** 4.6.2 #### 4.6.2.1 General The content of each microstructure component in the S-SBR is calculated from the absorbances ($D_{\rm t}$, $D_{\rm v}$, $D_{\rm c}$ and $D_{\rm s}$) of the sample at the corresponding wave numbers by the formula given by Hampton. [1] #### 4.6.2.2 Calculation of microstructure component concentration The concentration of each microstructure component $(C_s C_w C_t)$ and (C_c) is expressed by the following mulae: (standards.iteh.ai) $$C_{s} = -0.0138 \times D_{v} - 0.2604 \times D_{c} + 0.3739 \times D_{s}$$ ISO 21561-1:2015 $$C_{v} = -0.0067 \times D_{t}^{\text{https://standards.iteh.ai/catalog/standards/sist/8fde-70.d1-e52e-4354-b54e-} \\ D_{v} D_{t}^{\text{htt$$ $$C_{t} = 0.3937 \times D_{t} - 0.0112 \times D_{v} - 0.0361 \times D_{c} - 0.0065 \times D_{s}$$ (7) $$C_{\rm c} = -0.0044 \times D_{\rm t} - 0.0274 \times D_{\rm v} + 1.8347 \times D_{\rm c} - 0.0251 \times D_{\rm s}$$ (8) #### Calculation of microstructure The content (mol % in butadiene portion or mass % of styrene) of each microstructure component is expressed by the following formulae: $$S_m = \frac{C_s}{C_s + C_v + C_t + C_c} \times 100 \tag{9}$$ $$V = \frac{C_{\rm v}}{C_{\rm v} + C_{\rm t} + C_{\rm c}} \times 100 \tag{10}$$ $$T = \frac{C_{\rm t}}{C_{\rm v} + C_{\rm t} + C_{\rm c}} \times 100 \tag{11}$$