INTERNATIONAL STANDARD

ISO 20015

First edition 2017-08

Spherical plain bearings — Method for the calculation of static and dynamic load ratings

Rotules lisses — Méthode de calcul des charges statiques et dynamiques de base

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 20015:2017 https://standards.iteh.ai/catalog/standards/sist/47ce3565-a2a6-49e2-b239-49515e958263/iso-20015-2017

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 20015:2017 https://standards.iteh.ai/catalog/standards/sist/47ce3565-a2a6-49e2-b239-49515e958263/iso-20015-2017

COPYRIGHT PROTECTED DOCUMENT

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

tents	Page
vord	iv
Scope	1
Normative references	1
Terms and definitions	1
Symbols and units	2
Radial spherical plain bearings 5.1 Static radial load rating 5.2 Dynamic radial load rating	3
Angular contact radial spherical plain bearings 6.1 Static radial load rating 6.2 Dynamic radial load rating	4
Thrust spherical plain bearings 7.1 Static axial load rating 7.2 Dynamic axial load rating	5
x A (informative) Explanations of factors for the calculation of load ratings	7
x B (informative) Calculation example	8
iTeh STANDARD PREVIEW (standards.iteh.ai)	9
	Scope Normative references Terms and definitions Symbols and units Radial spherical plain bearings 5.1 Static radial load rating 5.2 Dynamic radial load rating Angular contact radial spherical plain bearings 6.1 Static radial load rating 6.2 Dynamic radial load rating Thrust spherical plain bearings 7.1 Static axial load rating 7.2 Dynamic axial load rating 8 A (informative) Explanations of factors for the calculation of load ratings 8 B (informative) Calculation example 8 Graphy TTEN STANDARD PREVIEW

ISO 20015:2017 https://standards.iteh.ai/catalog/standards/sist/47ce3565-a2a6-49e2-b239-49515e958263/iso-20015-2017

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. (standards.iteh.ai)

This document was prepared by Technical Committee ISO/TC 4, *Rolling bearings*, Subcommittee SC 8, *Load ratings and life*.

https://standards.iteh.ai/catalog/standards/sist/47ce3565-a2a6-49e2-b239-49515e958263/iso-20015-2017

Spherical plain bearings — Method for the calculation of static and dynamic load ratings

1 Scope

This document specifies methods of calculating the static load rating and the dynamic load rating for spherical plain bearings within the size ranges shown in ISO 12240-1, ISO 12240-2 and ISO 12240-3.

Rod ends according to ISO 12240-4 are excluded.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 6811, Spherical plain bearings — Vocabulary

ISO 12240-1, Spherical plain bearings — Part 1: Radial spherical plain bearings

ISO 12240-2, Spherical plain bearings — Part 2: Angular contact radial spherical plain bearings

ISO 12240-3, Spherical plain bearings — Part 3: Thrust spherical plain bearings

3 Terms and definitions ISO 20015:2017 https://standards.iteh.ai/catalog/standards/sist/47ce3565-a2a6-49e2-b239-

For the purposes of this document, the terms and definitions given in ISO 12240-1, ISO 12240-2, ISO 12240-3 and ISO 6811 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at http://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

3.1 Static conditions

3.1.1

static load rating

<spherical plain bearings> maximum load that the spherical plain bearing can accommodate at room temperature without inadmissible deforming or damage of the sliding surfaces, when there is no relative movement between the sliding contact surfaces

3.1.2

static radial load rating

 C_{01}

static load rating (3.1.1) when a load is applied on the spherical plain bearing in pure radial direction

313

static axial load rating

 C_{0a}

static load rating (3.1.1) when a load is applied on the spherical plain bearing in pure axial direction

3.2 Dynamic conditions

3.2.1

dynamic load rating

<spherical plain bearings> maximum load that the spherical plain bearing can accommodate at room temperature without inadmissible deforming or damage of the sliding surfaces, when there is relative movement between the sliding contact surfaces

3.2.2

dynamic radial load rating

 C_{i}

dynamic load rating (3.2.1) when a load is applied on the spherical plain bearing in pure radial direction

3.2.3

dynamic axial load rating

 C_{a}

dynamic load rating (3.2.1) when a load is applied on the spherical plain bearing in pure axial direction

4 Symbols and units

For the purposes of this document, the symbols given in ISO 12240-1, ISO 12240-2, ISO 12240-3 and the following apply (see Figures 1, 3 and $\underline{5}$).

- inner ring width, in millimetre (mm) **iTeh STANDARD PREVIEW**
- C outer ring width, in millimetre (mm)
- C_a dynamic axial load rating, in newton (N) (Standards.iteh.ai)
- $C_{\rm r}$ dynamic radial load rating, in newton (N) 0 20015:2017

https://standards.iteh.ai/catalog/standards/sist/47ce3565-a2a6-49e2-b239-

- C_{0a} static axial load rating, in newton (N) 5e958263/iso-20015-2017
- C_{0r} static radial load rating, in newton (N)
- D outside diameter, in millimetre (mm)
- d bore diameter, in millimetre (mm)
- $d_{\rm k}$ sphere diameter, in millimetre (mm)
- factor for the calculation of dynamic axial load ratings of the sliding contact area, which depends on design and material, in newton per square millimetre (MPa)
- f_r factor for the calculation of dynamic radial load ratings of the sliding contact area, which depends on design and material, in newton per square millimetre (MPa)
- f_{0a} factor for the calculation of static axial load ratings of the sliding contact area, which depends on design and material, in newton per square millimetre (MPa)
- f_{0r} factor for the calculation of static radial load ratings of the sliding contact area, which depends on design and material, in newton per square millimetre (MPa)

For angular contact spherical plain bearings and thrust spherical plain bearings, the symbols given in ISO 12240-2, ISO 12240-3 and following symbols apply additionally (see Figures 2 and 4):

- D_{S1} smallest diameter of sliding contact surface of the outer ring, in millimetre (mm)
- D_{S2} largest diameter of sliding contact surface of the outer ring, in millimetre (mm)

5 Radial spherical plain bearings

5.1 Static radial load rating

For radial spherical plain bearings with dimensions and tolerances in accordance to ISO 12240-1 (see <u>Figure 1</u>), the static radial load rating is calculated by <u>Formula (1)</u>:

$$C_{0r} = f_{0r} \cdot C \cdot d_{k} \tag{1}$$

The value of f_{0r} is not defined in this document, and should be requested from the manufacturer.

The information that is considered in f_{0r} is described in Annex A. A calculation example of static load rating using f_{0r} is described in Annex B.

5.2 Dynamic radial load rating

For radial spherical plain bearings with dimensions and tolerances in accordance to ISO 12240-1 (see <u>Figure 1</u>), the dynamic radial load rating is calculated by <u>Formula (2)</u>:

$$C_{r} = f_{r} \cdot C \cdot d_{k} \tag{2}$$

The value of f_r is not defined in this document, and it should be requested from the manufacturer.

The information that is considered in f_r is described in Annex A. A calculation example of dynamic load rating using f_r is described in Annex B.

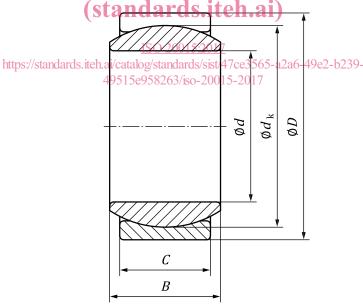


Figure 1 — Scheme of a radial spherical plain bearing

6 Angular contact radial spherical plain bearings

6.1 Static radial load rating

For angular contact radial spherical plain bearings with dimensions and tolerances in accordance to ISO 12240-2 (see Figure 2 and Figure 3), the static radial load rating is calculated by Formula (3):

$$C_{0r} = f_{0r} \cdot C \cdot \frac{D_{s1} + D_{s2}}{2} \tag{3}$$

The value of f_{0r} is not defined in this document, and it should be requested from the manufacturer.

The information that is considered in f_{0r} is described in Annex A.

6.2 Dynamic radial load rating

For angular contact radial spherical plain bearings with dimensions and tolerances in accordance to ISO 12240-2 (see Figure 2 and Figure 3), the dynamic radial load rating is calculated by Formula (4):

$$C_{\rm r} = f_{\rm r} \cdot C \cdot \frac{D_{\rm s1} + D_{\rm s2}}{2} \tag{4}$$

The value of f_{Γ} is not defined in this document, and it should be requested from the manufacturer.

The information that is considered in fris described in Annex A. REVIEW

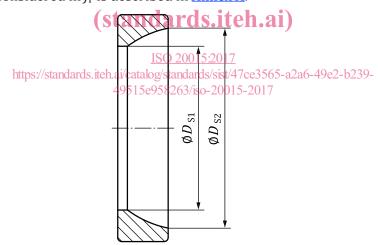


Figure 2 — Scheme of the outer ring of an angular contact spherical plain bearing

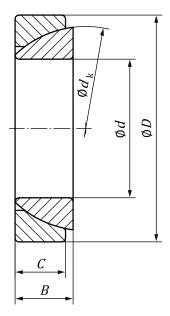


Figure 3 — Scheme of an angular contact spherical plain bearing

Thrust spherical plain bearings iTeh STANDARD PREVIEW

7.1 Static axial load rating (standards.iteh.ai)

For thrust spherical plain bearings with dimensions and tolerances in accordance to ISO 12240-3 (see Figure 4 and Figure 5), the static axial load rating is calculated by Formula (5):

https://standards.iteh.ai/catalog/standards/sist/47ce3565-a2a6-49e2-b239-

$$C_{0a} = f_{0a} \cdot (D_{s2}^2 - D_{s1}^2) \cdot \frac{\pi}{4}$$
 49515e958263/iso-20015-2017 (5)

The value of f_{0a} is not defined in this document, and it should be requested from the manufacturer.

The information that is considered in f_{0a} is described in Annex A.

7.2 Dynamic axial load rating

For thrust spherical plain bearings with dimensions and tolerances in accordance to ISO 12240-3 (see Figure 4 and Figure 5), the dynamic axial load rating is calculated by Formula (6):

$$C_{a} = f_{a} \cdot (D_{s2}^{2} - D_{s1}^{2}) \cdot \frac{\pi}{4}$$
 (6)

The value of f_a is not defined in this document, and it should be requested from the manufacturer.

The information that is considered in f_a is described in Annex A.